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Abstract. The present paper proposes and analyzes an interior penalty technique using C0-finite
elements to solve the Maxwell equations in domains with heterogeneous properties. The convergence
analysis for the boundary value problem and the eigenvalue problem is done assuming only minimal
regularity in Lipschitz domains. The method is shown to converge for any polynomial degrees and to
be spectrally correct.
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1. Introduction

The objectives of the present paper is to propose and analyze a nodal C0-finite element technique to solve
the Maxwell equations in domains with heterogeneous properties. More precisely, given a three-dimensional
domain Ω with boundary Γ, we want to construct an approximation of the following problem using an interior
penalty technique and C0-Lagrange finite elements:

∇×(κ∇×E) = εg, ∇·(εE) = 0, E×n|∂Ω = 0, (1.1)

where the fields κ and ε are only piecewise smooth. This task is non-trivial on two counts: first, the solution of
(1.1) is singular in general, see e.g. Bonito et al. [6]; second, it is known since the pioneering work of Costabel
[15] that H1-conforming approximation techniques that rely on uniform L2-stability estimates both on the
curl and the divergence of the approximate field do not converge properly if Ω is non-smooth and non-convex.
This defect is a consequence of H1(Ω) ∩ H0,curl(Ω) being a closed proper subspace of Hdiv(Ω) ∩ H0,curl(Ω).
This is probably one reason why edge elements have been favored over C0-Lagrange finite elements over the
years. It is only recently, say since the ground-breaking “rehabilitation” work of Costabel and Dauge [16],
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Bramble and Pasciak [7] and Bramble et al. [8] that C0-Lagrange finite elements have regained their status
as credible approximation tools for the Maxwell equations and more generally for div-curl problems. The key
idea developed in the above references is that the divergence of the discrete field approximating εE must be
controlled in a space that is intermediate between L2(Ω) and H−1(Ω). This program is carried out in Costabel
and Dauge [16] by controlling the divergence of εE in a weighted L2-space where the weight is a distance to the
re-entrant corners of the domain to some appropriate power depending on the strength of the singularity. The
analysis of the method by Costabel and Dauge [16] requires the approximation space to contain the gradient
of C1 scalar-valued functions, which excludes low-order finite-elements spaces. This restriction on low-order
elements is removed in Buffa et al. [12] by considering a mixed form of the weighted L2-stabilization technique
on special meshes. The method developed by Bramble and Pasciak [7] and Bramble et al. [8] involves a least-
square approximation of a discrete problem with different test and trial spaces. The trial space is L2(Ω) and the
components of the test space are subspaces of H1(Ω). The numerical method uses piecewise constant functions
for the trial space and piecewise linear functions enriched with face bubbles for the test space. A technique
based on a local L2-stabilization of the divergence of εE and using finite elements of order high enough so as
to contain the gradient of Argyris or Hsieh-Clough-Tocher C1-finite elements is introduced in Duan et al. [19].
The convergence analysis of the method requires the source term to be smooth enough so that ∇×E ∈ Hr(Ω)
with r > 1

2 . This method is further revisited in two space dimensions in Duan et al. [18] to allow for low-order
finite elements and to remove the smoothness assumption on ∇×E.

The present paper is the second part of a research program started in Bonito and Guermond [5] and is part
of the PhD thesis of Luddens [28]. The technique adopted in [5] consists of stabilizing the divergence of the field
εE in a negative Sobolev norm through a mixed formulation. It is shown in [5] that stabilizing the divergence in
H−1(Ω) is sufficient to solve the boundary value problem (1.1), but it may not be sufficient in general to solve the
associated eigenvalue problem if only Lipschitz regularity of the domain is assumed. In this case the divergence
must be stabilized in H−α(Ω) with α ∈ ( `

2`−1 , 1] where `− 1 is the polynomial degree of the approximation of

E, ` ≥ 1. Note in passing that the method introduced in [5] with the particular choice α = 1 has also been
proposed in Badia and Codina [4]. The convergence analysis of the boundary value problem in [4] assumes that
the right-hand side is divergence free and either the solution to (1.1) is smooth or the degree of the finite element
space is large enough or the mesh is specifically constructed so as to contain the gradient of C1 scalar-valued
functions. The method proposed in Bonito and Guermond [5] converges for all α ∈ ( `

2`−1 , 1] as stated in [5,

Lemma 5.4], and the convergence rate is even maximal when α = 1 without the extra assumptions used in
[4], provided the right-hand of the boundary value problem is solenoidal (which is usually the case). Yet, the
possibility of choosing α < 1 has been introduced in [5] to ensure the spectral correctness of the approximation
for eigenvalue problems.

The objective of the present paper is to generalize the analysis of Bonito and Guermond [5] to boundary and
eigenvalue problems with coefficients κ and ε in (1.1) that are only piecewise smooth. Our analysis assumes
only the natural regularity of the solution; in particular the a priori regularity of E may be lower than that of
H

1
2 (Ω), see Theorem 2.1. We focus mainly our attention on the convergence analysis in the very low regularity

range, E ∈ Hs(Ω), 0 < s < 1
2 . This range is rarely investigated in the literature since it entails many technical

difficulties. One purpose of the present paper is to show that these difficulties can be handled properly when
using continuous finite elements; the analysis with discontinuous elements has already been done, see e.g. Buffa
and Perugia [10], Buffa et al. [11].

The approximation that we propose consists of using a mixed formulation with nodal finite elements and an
interior penalty method to account for the jumps in the coefficients κ and ε. The convergence analysis presented
holds for any polynomial degree (greater than one). One essential argument of this paper is the construction of a
smoothing operator in H0,curl(Ω) that commutes (almost) with the curl operator, see Lemma 3.6. In passing we
correct a mistake from [5] where the smoothing operator was not constructed properly. The second important
argument is Lemma A.3 in the Appendix. This is a variant of Lemma 8.2 in Buffa and Perugia [10]; however,
our proof slightly differs from that in Buffa and Perugia [10] since the estimates therein do not seem to be
uniform in the meshsize.
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The method presented in this paper has been implemented in a three-dimensional parallel MHD code, SFE-
MaNS, see e.g. Guermond et al. [24]. The code is distributed and used by astrophysicists colleagues to test
various dynamo scenarios, e.g. Giesecke et al. [21, 22], Hollerbach et al. [25]. It is currently used to investigate
the MHD stability of liquid metal batteries.

The paper is organized as follows. We introduce notation and recall a priori regularity results in §2. The
smoothing operator in H0,curl(Ω) is introduced in §3. The key properties of this operator are stated in The-
orem 3.1 and Lemma 3.6 (the estimate (3.17) is particularly important). The finite element framework and
the interior penalty technique are presented in §4. This section also contains stability estimates for the weak
formulation of the boundary value problem. The convergence analysis for the boundary value problem is done
in §5. The two important results from this section are Theorem 5.1 and Theorem 5.3. Theorem 5.1 establishes
convergence in a discrete norm and Theorem 5.3 establishes convergence in L2(Ω) using a duality argument.
Additional convergence estimates assuming full regularity are given in Theorem 5.2 for completeness. The spec-
tral correctness of the approximation of the eigenvalue problem is analyzed in §6. The paper is complemented
with an appendix containing technical details. Lemma A.3 is one of the key results from the Appendix.

2. Preliminaries

2.1. Spaces

Let D be an open connected Lipschitz domain in R3. (In the rest of the paper D denotes a generic open
Lipschitz domain that may differ from Ω.) The space of smooth functions with compact support in D is denoted
D(D). The norm in H1(D) is defined as follows:

‖v‖2H1(D) := ‖v‖2L2(D) + ‖∇v‖2L2(D). (2.1)

The space Hs(D) for s ∈ (0, 1) is defined by the method of real interpolation between H1(D) and L2(D) (see
e.g. Tartar [33]), i.e.,

Hs(D) = [L2(D),H1(D)]s,2. (2.2)

We also define the space H1
0(D) to be the completion of D(D) with respect to the following norm:

‖v‖H1
0(D) := ‖∇v‖L2(D). (2.3)

This allows us again to define the space Hs
0(D) for s ∈ (0, 1) by the method of real interpolation between H1

0(D)
and L2(D) as follows:

Hs
0(D) = [L2(D),H1

0(D)]s,2. (2.4)

This definition is slightly different from what is usually done; the only differences occurs at s = 1
2 . What we

hereafter denote by H
1
2
0 (D) is usually denoted by H

1
2
00(D) elsewhere. Owing to these definitions, the spaces

Hs
0(D) and Hs(D) coincide for s ∈ [0, 1

2 ) and their norms are equivalent, (see e.g. Lions and Magenes [27, Thm
11.1] or Tartar [33, Chap. 33]). The space H−s(D) is defined by duality with Hs

0(D) for 0 ≤ s ≤ 1, i.e., with a
slight abuse of notation we define

‖v‖H−s(D) = sup
06=w∈Hs0(D)

∫
D
vw

‖w‖Hs0(D)
.

It is a standard result that H−s(D) = [L2(D),H−1(D)]s,2.
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The above definitions are naturally extended to the vector-valued Sobolev spaces Hs(D) and Hs
0(D). We

additionally introduce the following spaces of vector-valued functions:

Hcurl(D) = {v ∈ L2(D) | ∇×v ∈ L2(D)}, (2.5)

H0,curl(D) = {v ∈ L2(D) | ∇×v ∈ L2(D), v×n|∂D = 0}, (2.6)

Hr
curl (D) = {v ∈ L2(D) | ∇×v ∈ Hr(D)}, (2.7)

Hr
0,curl (D) = {v ∈ L2(D) | ∇×v ∈ Hr(D), v×n|∂D = 0}, (2.8)

all equipped with their natural norm; for instance, ‖v‖2Hcurl(D) = ‖v‖2L2(D) + ‖∇×v‖2L2(D).

2.2. The domain

The domain Ω is a bounded open set in R3. The boundary of Ω, say Γ, is assumed to have the Lipschitz
regularity and to be connected. To simplify the presentation we also assume that 0 ∈ Ω and Ω is star-shaped
with respect to an open neighborhood of 0. More precisely, there is an open neighborhood of the origin, say V,
such that Ω is star-shaped with respect to all the points on V. This assumption is equivalent to assuming that
Ω is a star-shaped domain with respect to the origin and there exists a real number χ ∈ (0, 1) such that the
following holds for any δ ∈ (0, 1):

(1− δ)Ω +B(0, δχ) ⊂⊂ Ω, (2.9)

where B(0, r) is the ball centered at 0 of radius r and ⊂⊂ denotes compact embedding.
A key piece of the convergence analysis of the method that we propose in this paper is based on the existence of

a family of smoothing operators in H0,curl(Ω). This construction is discussed in detail in §3. The main challenge
one encounters when constructing this family of operators is to make it compatible with the boundary condition
and to commutes with the curl operator. The purpose of the hypothesis (2.9) is to make this construction
possible. The hypothesis (2.9) may seem restrictive, but, using a partition of unity technique, we expect the
results presented in this paper to remain valid for any domain that can be divided into finitely many domains
that are star-shaped with respect to a open neighborhood.

2.3. Mixed formulation of the problem

It will prove convenient to reformulate the original problem (1.1) in mixed form to have a better control on
the divergence of the field εE. More precisely, from now on we consider the following problem: Given a vector
field g, find E and p such that

∇×(κ∇×E) + ε∇p = εg; ∇·(εE) = 0, E×n|Γ = 0, p|Γ = 0. (2.10)

The two problems (2.10) and (1.1) are equivalent if ∇·(εg) = 0, since in this case p = 0 in (2.10) (apply the
divergence operator to the first equation).

The scalar fields κ and ε are assumed to be piecewise smooth. More precisely we assume that Ω is partitioned
into N Lipschitz subdomains Ω1, · · · ,ΩN such that the restrictions of κ and ε to these subdomains are smooth.
To better formalize this assumption we define

Σ :=
⋃
i 6=j

∂Ωi ∩ ∂Ωj , (2.11)

W1,∞
Σ (Ω) :=

{
ν ∈ L∞(Ω) | ∇(ν|Ωi) ∈ L∞(Ωi), i = 1, · · · , N

}
. (2.12)

We refer to Σ as the interface between the subdomains Ωi. In the rest of the paper we assume that the fields ε
and κ satisfy the following properties: There exist εmin, κmin > 0 such that

ε, κ ∈W1,∞
Σ (Ω), and ε ≥ εmin, κ ≥ κmin a.e. in Ω. (2.13)
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The following stability results proved in Bonito et al. [6] play important roles in the stability of the finite element
method developed in this paper:

Theorem 2.1. Assuming that εg ∈ L2(Ω) and (2.13), Problem (2.10) has a unique solution in H0,curl(Ω)×H1
0(Ω).

Moreover, there exist c, τε and τκ, depending on Ω and the fields ε and κ, so that

‖E‖Hs(Ω) ≤ c‖εg‖L2(Ω), ∀s ∈ [0, τε), (2.14)

‖∇×E‖Hs(Ω) ≤ c‖εg‖L2(Ω), ∀s ∈ [0, τκ). (2.15)

‖∇×(κ∇×E)‖L2(Ω) + ‖∇p‖L2(Ω) ≤ c‖εg‖L2(Ω), (2.16)

Remark 2.1. In general the regularity indices τε and τκ are smaller than 1
2 when the domain Ω is not convex

and the scalar field ε and κ are discontinuous across Σ.

3. Smooth approximation in H0,curl(Ω)

We introduce in this section a smoothing operator in H0,curl(Ω) that will be used to prove the convergence
of the finite element approximation. The key difficulty that we are facing is to find an approximation that is
compatible with the boundary condition in H0,curl(Ω) and commutes with the curl operator. We essentially
proceed as in Bonito and Guermond [5] but modify the argument to correct an incorrect statement made therein.
When invoking Ch(AE)ε in the proof of Lemma 3.3 in Bonito and Guermond [5] it was incorrectly assumed that
(AE)ε is in H0,curl(Ω), which is not the case. We resolve this issue in the present construction by introducing
an additional scaling operator, SδD. Some of the tools introduced in this section are similar in spirit to those
developed in Arnold et al. [2], Christiansen and Winther [13], Schöberl [32]

3.1. Extension operator

Let D be an open Lipschitz domain in R3. For any F ∈ L1(D), we denote EDF the extension of F by 0, i.e.,

EDF(x) =

{
F(x) if x ∈ D,

0 elsewhere.
(3.1)

Let δ ∈ [0, 1
2 ], define δ̄ := 1− δ and set Dδ := δ̄D. We define the scaling operator SδD : L1(D) 7−→ L1(Dδ) by

∀F ∈ L1(D), ∀x ∈ Dδ, (SδDF)(x) := F
(
xδ̄−1

)
. (3.2)

Lemma 3.1. The following commuting properties hold:

SδR3ED = EDδS
δ
D (3.3)

∂xi(S
δ
DF) = δ̄−1SδD(∂xiF), ∀F ∈ L1(D), ∀i = 1, . . . , d, (3.4)

∇×(EDF) = ED(∇×F), ∀F ∈ H0,curl(D), (3.5)

∇(EDF) = ED(∇F), ∀F ∈ H1
0(D). (3.6)

Proof. (3.3) is evident and (3.4) is just the chain rule. We only prove (3.5) since the proof of the (3.6) is similar.
Let F be a member of H0,curl(D), then the following holds:

〈∇×(EDF),φ〉 =

∫
R3

(EDF)·∇×φ =

∫
D

F·∇×φ =

∫
D

∇×F·φ, ∀φ ∈ DDD(R3),

where the last equality holds owing to F being in H0,curl(D). Then

〈∇×(EDF),φ〉 =

∫
R3

ED(∇×F)·φ, ∀φ ∈ DDD(R3),
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which proves the statement. �

Lemma 3.2. The following holds for all r ∈ [0, 1]: (i) the linear operator ED : Hr
0(D) → Hr

0(R3) is bounded;
(ii) the family of operators {SδD} : Hr(D)→ Hr(Dδ) is uniformly bounded with respect to δ ∈ [0, 1

2 ].

Proof. It is a standard result that ED is a continuous operator from L2(D) to L2(R3) and from H1
0(D) to H1

0(R3),
Adams and Fournier [1]. Then the first assertion follows directly from the interpolation theory. For the second
part, a scaling argument ensures that SδD is a continuous operator from L2(D) to L2(Dδ). Using (3.4), we infer
that it is also a continuous operator from H1(D) to H1(Dδ). The conclusion follows from the interpolation
theory. �

Taking r ∈
[
0, 1

2

)
and using the fact that the spaces Hr

0(Ω) and Hr(Ω) coincide (with equivalent norms), we
infer that there exists c such that,

∀F ∈ Hr(Ω), ‖EΩF‖Hr(R3) ≤ c ‖F‖Hr(Ω). (3.7)

Moreover, using this inequality and the second part of Lemma 3.2 with D = R3, we infer that SδR3EΩ : Hr(Ω)→
Hr(R3) is a linear continuous operator, and there exists c, uniform in δ, such that

∀F ∈ Hr(Ω), ‖SδR3EΩF‖Hr(R3) ≤ c ‖F‖Hr(Ω). (3.8)

Lemma 3.3. The following holds:

∀F ∈ H0,curl(Ω), ∇×(SδR3EΩF) = δ̄−1SδR3EΩ(∇×F). (3.9)

Proof. Let F ∈ H0,curl(Ω). By (3.4) we infer that

∇×(SδR3EΩF) = δ̄−1SδR3∇×(EΩF).

Then (3.5) from Lemma 3.1 implies

∇×(SδR3EΩF) = δ̄−1SδR3EΩ(∇×F),

since F ∈ H0,curl(Ω). This concludes the proof. �

Lemma 3.4. The linear operator SδR3EΩ : Hr
0,curl (Ω) −→ Hr

0,curl

(
R3
)

is bounded for all r ∈ [0, 1
2 ). More

precisely there is c, uniform with respect to δ, so that the following holds:

‖∇×(SδR3EΩF)‖Hr(R3) ≤ c‖∇×F‖Hr(Ω). (3.10)

Proof. The identity (3.9) implies that SδR3EΩ is a continuous map from H0,curl(Ω) to H0,curl

(
R3
)
. Let r∈ [0, 1

2 )

and let F be a member of Hr
0,curl (Ω). A simple scaling argument implies that SδΩF is a member of Hr

0,curl (Ωδ).

Since ∇×SδΩF is in Hr(Ω) and r ∈ [0, 1
2 ), the extension by zero is stable in Hr(R3), i.e., EΩδ∇×SδΩF is a

member of Hr(R3) and there is a constant c, uniform with respect to F and δ, so that

‖EΩδ∇×SδΩF‖Hr(R3) ≤ c′‖∇×SδΩF‖Hr(Ωδ) = c′δ̄−1‖SδΩ∇×F‖Hr(Ωδ)

≤ c‖∇×F‖Hr(Ω).

Note that c is uniform with respect to δ since δ̄ ∈ [ 1
2 , 1]. Then, applying (3.3) and (3.5) to the above inequality

gives

‖∇×(SδR3EΩF)‖Hr(R3) = ‖∇×(EΩδS
δ
ΩF)‖Hr(R3) = ‖EΩδ∇×SδΩF‖Hr(R3)

≤ c ‖∇×F‖Hr(Ω),
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which concludes the proof. �

We now state a lemma that gives some important approximation properties of the operator F 7→ SδR3EΩF.

Lemma 3.5. There exists K1 for all r ∈ [0, 1] such that the following holds for every F ∈ Hr
0(Ω):

‖F− SδR3EΩF‖Hs
0(Ω) ≤ K1δ

r−s‖F‖Hr
0(Ω) 0 ≤ s ≤ r ≤ 1, (3.11)

and for all r ∈ [0, 1
2 ) there exists K2, such that the following holds every F ∈ Hr

0,curl (Ω)

‖∇×(F− SδR3EΩF)‖Hs(Ω) ≤ K2δ
r−s‖∇×F‖Hr(Ω) 0 ≤ s ≤ r < 1

2
. (3.12)

Proof. We prove the first inequality (3.11) by means of an interpolation technique. Using Lemma 3.1 together
with d ≥ 2, we have

‖F− SδR3EΩF‖L2(Ω) ≤ ‖F‖L2(Ω) + ‖SδR3EΩF‖L2(Ω) ≤
(

1 + δ̄
d
2

)
‖F‖L2(Ω) ≤ 2‖F‖L2(Ω).

‖F− SδR3EΩF‖H1
0(Ω) = ‖∇(F− SδR3EΩF)‖L2(Ω) ≤ ‖∇F‖L2(Ω) + ‖∇SδR3EΩF‖L2(Ω)

= ‖∇F‖L2(Ω) + δ̄−1‖SδR3∇(EΩF)‖L2(Ω) = ‖∇F‖L2(Ω) + δ̄
d
2−1‖EΩ∇F‖L2(Ω)

=
(

1 + δ̄
d
2−1
)
‖∇F‖L2(Ω) ≤ 2‖F‖H1

0(Ω).

We now derive an estimate for the mapping H1
0(Ω) 3 F 7→ F− SδR3EΩF ∈ L2(Ω). The definition of SδR3EΩF

implies that

‖F− SδR3EΩF‖2L2(Ω) =

∫
Ω

∣∣(EΩF)(x)− (EΩF)
(
xδ̄−1

)∣∣2 dx

=

∫
Ω

∣∣∣∣∫ 1

0

∇(EΩF)
(
(1− t)x + txδ̄−1

)
·δ
δ̄
x dt

∣∣∣∣2 dx

≤
∫

Ω

δ2

δ̄2
|x|2

∫ 1

0

∣∣∇(EΩF)
(
(1− t)x + txδ̄−1

)∣∣2 dt dx.

Then, we introduce M := maxx∈Ω |x|, and we apply Fubini’s lemma:

‖F− SδR3EΩF‖2L2(Ω) ≤M
2 δ

2

δ̄2

∫ 1

0

∫
Ω

∣∣∇(EΩF)
(
(1− t)x + txδ̄−1

)∣∣2 dxdt

Using a change of variable in the inner integral, we finally obtain

‖F− SδR3EΩF‖2L2(Ω) ≤M
2 δ

2

δ̄2
‖∇EΩF‖2L2(Ωδ)

∫ 1

0

(
δ̄

δ̄ + δt

)d
dt

≤M2δ2δ̄−2‖∇(EΩF)‖2L2(R3).

Since F ∈ H1
0(Ω), we have ‖∇EΩF‖L2(R3) = ‖EΩ∇F‖L2(R3) = ‖∇F‖L2(Ω). Using now the assumption δ ≤ 1

2 ,

i.e., δ̄−1 ≤ 2, we finally deduce that

‖F− SδR3EΩF‖L2(Ω) ≤ 2Mδ‖∇F‖L2(Ω) = 2Mδ‖F‖H1
0(Ω). (3.13)
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We now set K1 := max(2, 2M) and we have proven that

‖F− SδR3EΩF‖L2(Ω) ≤ K1‖F‖L2(Ω),

‖F− SδR3EΩF‖L2(Ω) ≤ K1δ‖F‖H1
0(Ω),

‖F− SδR3EΩF‖H1
0(Ω) ≤ K1‖F‖H1

0(Ω).

We conclude that (3.11) holds by using the Lions-Peetre Reiteration Theorem.
We now turn our attention to (3.12). Let r ∈ [0, 1

2 ) and consider s ∈ [0, r]. Let F be a member of Hr
0,curl (Ω).

We observe first that SδR3EΩF is also in Hr
0,curl (Ω) owing to Lemma 3.4. Using (3.9) gives

‖∇×(F− SδR3EΩF)‖Hs
0(Ω) = ‖∇×F− δ̄−1SδR3EΩ∇×F‖Hs

0(Ω)

≤ ‖∇×F− δ̄−1∇×F‖Hs
0(Ω) + δ̄−1‖∇×F− SδR3EΩ(∇×F)‖Hs

0(Ω)

≤ δδ̄−1‖∇×F‖Hs
0(Ω) +K1δ̄

−1δr−s‖∇×F‖Hr
0(Ω).

Using δ < 1
2 , i.e., δ̄−1 ≤ 2, we have

‖∇×(F− SδR3EΩF)‖Hs
0(Ω) ≤ 2(K1 + δ1−r+s)δr−s‖∇×F‖Hr

0(Ω),

Remembering that Hs(Ω) and Hs
0(Ω) coincide for 0 ≤ s ≤r < 1

2 and that their norm are equivalent, the above

inequality yields (3.12) with K2 = 2(K1 + 1) since 1− r + s ≥ 1− r > 0 and δ ≤ 1
2 . �

3.2. Smooth approximation

We now use the above extension operator SδR3EΩ together with a mollification to construct a smooth approx-

imation operator. For δ ∈ (0, 1
2 ), we set

ρδ(x) := δ−dρ(x/δ), where ρ(x) :=

{
η exp

(
− 1

1−|x|2

)
, if |x| < 1,

0, if |x| ≥ 1,
(3.14)

where η is chosen so that
∫
Rd ρ = 1. We define a family of approximation operators {Kδ}δ>0 in the following

way:
KδF = ρδχ ? (SδR3EΩF), ∀F ∈ L1(Ω) (3.15)

where χ is the constant introduced in (2.9).

Theorem 3.1. KδF|Ω is in CCC∞0 (Ω) for all F ∈ L1(Ω). There exists a constant K such that the following
estimates hold for any 0 < δ < 1

2 :

‖F−KδF‖Hs
0(Ω) ≤ Kδr−s‖F‖Hr

0(Ω) 0 ≤ s ≤ r ≤ 1 (3.16)

‖∇×F−∇×KδF‖Hs(Ω) ≤ Kδr−s‖∇×F‖Hr(Ω) 0 ≤ s ≤ r < 1
2 (3.17)

‖KδF‖Hr(Ω) ≤ Kχs−rδs−r‖F‖Hs(Ω) 0 ≤ s ≤ r, s < 1
2 (3.18)

and all F ∈ Hr
0(Ω), all F ∈ Hr

0,curl (Ω), and all F ∈ Hr(Ω), respectively.

Proof. Owing to the properties of the mollification operator, we have KδF|Ω ∈ CCC∞(Ω). We now prove that the
support of KδF is compact in Ω. The definition of the convolution operation implies that the following holds
for all x ∈ Rd:

KδF(x) =

∫
Rd

(SδR3EΩF)(y)ρδχ(x− y) dy =

∫
δ̄Ω

F(y/δ̄)ρδχ(x− y) dy.
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If x /∈ δ̄Ω + B(0, δχ), then for all y ∈ δ̄Ω, we have ρδχ(x − y) = 0 and then KδF(x) = 0. As a result,
KδF is supported in δ̄Ω + B(0, δχ) which is compactly embedded in Ω owing to the assumption (2.9). Hence,
KδF ∈ CCC∞0 (Ω); in particular, we have KδF ∈ H0,curl(Ω). We now prove the estimates (3.16) to (3.18). Let us
first consider F ∈ Hr

0(Ω). Using standard approximation properties of the mollification operator (see e.g. Evans
[20, Appendix C]), we deduce that there exists a uniform constant K3 > 0 so that

‖SδR3EΩF−KδF‖Hs
0(Ω) ≤ K3(δχ)r−s‖SδR3EΩF‖Hr

0(R3), 0 ≤ s ≤ r ≤ 1.

Using the triangle inequality and Lemma 3.5 we have

‖F−KδF‖Hs
0(Ω) ≤ ‖F− SδR3EΩF‖Hs

0(Ω) + ‖SδR3EΩF−KδF‖Hs
0(Ω)

≤ K1δ
r−s‖F‖Hr

0(Ω) +K3χ
r−sδr−s‖SδR3EΩF‖Hr

0(R3)

≤ (K1 + 2K3χ
r−s)δr−s‖F‖Hr

0(Ω).

This proves (3.16) with K = K1 + 2K3 since χ ≤ 1 and s ≤ r. Let us now consider F ∈ Hr
0,curl (Ω). Using that

∇×KδF = ρδχ ?∇×(SδR3EΩF), we infer that

‖∇×(SδR3EΩF−KδF)‖Hs(Ω) ≤ K3(δχ)r−s‖∇×(SδR3EΩF)‖Hr(R3) 0 ≤ s ≤ r

Using the triangle inequality together with (3.10), Lemma 3.5, and assuming that r < 1
2 we have

‖∇×(F−KδF)‖Hs(Ω) ≤ ‖∇×(F− SδR3EΩF)‖Hs(Ω) + ‖∇×(SδR3EΩF−KδF)‖Hs(Ω)

≤ K2δ
r−s‖∇×F‖Hr(Ω) +K3(δχ)r−s‖∇×(SδR3EΩF)‖Hr(R3)

≤ δr−s(K2 +K3χ
r−s)‖∇×F‖Hr(Ω),

which proves (3.17) with K = K2 +K3 since χ ≤ 1 and s ≤ r. Let us finally assume that F ∈ Hr(Ω). Using
again the properties of the mollification operator, we infer that

‖KδF‖Hr(Ω) ≤ ‖KδF‖Hr(R3) ≤ K3(δχ)s−r‖SδR3EΩF‖Hs(R3) 0 ≤ s ≤ r.

Applying (3.8), we obtain (3.18). Note that the assumption s < 1
2 is required in order to ensure that SδR3EΩF ∈

Hs(R3). �

Remark 3.1. In the rest of the paper we will use (3.18) without mentioning the coefficient χs−r in the right
hand sides. Indeed, we will use the inequality with r bounded from above by the polynomial degree of the
approximation; as a result, χs−r is uniformly bounded.

We end this section by mentioning a key commuting property on Kδ.
Lemma 3.6. The following holds for any F ∈ H0,curl(Ω):

δ̄∇×KδF = Kδ(∇×F). (3.19)

Proof. Owing to the properties of the convolution, the following holds for any F ∈ H0,curl(Ω):

∇×KδF = ρδχ ?
(
∇×

(
SδR3EΩF

))
.

Applying (3.9), we infer that

∇×KδF = ρδχ ?
(
δ̄−1SδR3EΩ(∇×F)

)
= δ̄−1ρδχ ?

(
SδR3EΩ(∇×F)

)
= δ̄−1Kδ(∇×F).
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Figure 1. Example of an admissible mesh. The interface Σ is materialized by the thick line.

This completes the proof. �

4. Finite Element Approximation of the boundary value problem

We introduce and study the stability properties of a Lagrange finite element technique for solving the bound-
ary value problem (2.10).

4.1. Finite Element Spaces

Let {Th}h>0 be a shape regular family of conforming affine meshes with typical mesh size h. We assume that
the sub-domains Ωi, i = 1, . . . , N are polyhedra and the interface Σ is captured by the meshes in {Th}h>0, i.e.,
Σ is partitioned by a set of mesh interfaces. We introduce the following discrete space:

Xh :=

{
F ∈

N∏
i=1

CCC0(Ω̄i), | ∀K ∈ Th, F|K ∈ PPP`−1

}
(4.1)

where PPP`−1 denotes the vector space of vector-valued polynomial of total degree at most ` − 1, ` ≥ 2. Note
that the approximation space is non-conforming, i.e., Xh 6⊂ H0,curl(Ω) and Xh 6⊂ Hdiv (Ω, ε). We assume that

the mesh family is such that there exists a family of local approximation operators Clh :
∏N
i=1 H`(Ωi) → Xh

satisfying the following properties: there exists c uniform in h such that

‖ClhF‖Hr(Ωi) ≤ c ‖F‖Hr(Ωi), 0 ≤ r < 3
2 , (4.2)

‖ClhF− F‖Ht(Ωi) ≤ c h
r−t‖F‖Hr(Ωi), 0 ≤ t ≤ r ≤ `, t < 3

2 , (4.3)

for every F ∈
∏N
i=1 H`(Ωi). We furthermore assume that the non-conformity across the interface Σ is not too

severe in the sense that there exists a family of discrete subspaces Yh ⊂ Xh ∩H1
0(Ω) and a family of global

approximation operators Cgh : CCC∞0 (Ω) −→ Yh so that

‖CghF− F‖Ht(Ω) ≤ c hr−t‖F‖Hr(Ω), 0 ≤ t ≤ r ≤ `, t < 3
2 , (4.4)

for every F ∈ CCC∞0 (Ω). An example of triangulation satisfying the above geometric assumption is shown in
Figure 1. Note that it is possible to prove the existence of Cgh satisfying (4.4) even in the presence of hanging
nodes provided the maximum number of those hanging nodes on each interface is uniformly bounded over the
mesh family {Th}h>0. We additionally introduce the scalar-valued discrete space

Mh :=
{
q ∈ C0(Ω̄), | ∀K ∈ Th, q ∈ P`−1, q|Γ = 0

}
⊂ H1

0(Ω). (4.5)
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Again, the approximation theory of finite elements ensures that there exists an approximation operator Cph :

H1
0(Ω) −→Mh satisfying the scalar counterparts of (4.2) and (4.3) for all q ∈ H1

0(Ω) ∩Hl(Ω).

‖Cphq‖Hl(Ω) ≤ c‖q‖Hl(Ω) 0 ≤ l ≤ 3
2 (4.6)

‖Cphq − q‖Ht(Ω) ≤ chl−t‖q‖Hl(Ω) 0 ≤ t ≤ l ≤ `, t < 3
2 . (4.7)

Note that the possibility of constructing Mh and Cph is compatible with the existence of Yh.
We denote F ih the set of the mesh interfaces: F is an interface if there are two elements in Th, say Km and

Kn so that F = Km ∩ Kn and F is a d − 1 manifold. We denote F∂h the set of the boundary faces: F is a
boundary face if there is an element in Th, say Ki so that F = Km ∩ Γ and F is a d− 1 manifold. To simplify
the notation we also introduce Fh := F ih∪F∂h . For any mesh interface F ∈ F ih, F = Km∩Kn, and any function
v whose restrictions over Km and Kn are continuous, we define the tangent and normal jump of v across F by

[[v × n]](x) := (v|Km×nm)(x) + (v|Kn×nn)(x), ∀x ∈ F, (4.8)

[[v·n]](x) := (v|Km ·nm)(x) + (v|Kn ·nn)(x), ∀x ∈ F, (4.9)

where nl is the unit outer normal to Kl. The average of v across across F is defined by

{{v}} (x) :=
1

2

(
v|Km(x) + v|Kn(x)

)
, ∀x ∈ F. (4.10)

Whenever F is a boundary face we set [[v×n]](x) := v|Km×nm(x), [[v·n]](x) := v|Km ·nm(x) and {{v}} (x) :=
v|Km(x).

Remark 4.1. Note that for any F ∈ CCC∞0 (Ω), CghF ∈ H1
0(Ω); in particular, we have [[CghF×n]] = 0 across all the

interfaces in F ih.

4.2. Discrete formulation

It will be useful to work with broken norms; for instance, we introduce the following notation:

‖v‖2Hs(ΩΣ) :=

N∑
i=1

‖v‖2Hs(Ωi), (v, w)ΩΣ
:=

N∑
i=1

∫
Ωi

vw, (4.11)

‖v‖2L2(Σ∪Γ) := ‖v‖2L2(Σ) + ‖v‖2L2(Γ), (v, w)Σ∪Γ :=

∫
Σ

vw +

∫
Γ

vw. (4.12)

We construct a discrete formulation of (2.10) by proceeding as in Bonito and Guermond [5]. Let α ∈ [0, 1]
be a parameter yet to be chosen. We define the following bilinear form ah : Xh×Mh −→ R,

ah((Eh, ph), (Fh, qh)) := (κ∇×Eh,∇×Fh)ΩΣ
+ ({{κ∇×Eh}} , [[Fh×n]])Σ∪Γ

+ θ ({{κ∇×Fh}} , [[Eh×n]])Σ∪Γ + γh−1 ({{κ}} [[Eh×n]], [[Fh×n]])Σ∪Γ

+ (ε∇ph,Fh)Ω − (εEh,∇qh)Ω + cα

(
h2α (∇·(εEh),∇·(εFh))ΩΣ

(4.13)

+ h2(1−α) (ε∇ph,∇qh)Ω + h(2α−1) ([[εEh·n]], [[εFh·n]])Σ

)
,

where γ, cα > 0, and θ ∈ {−1, 0,+1} are user-defined parameters. We say that the formulation is anti-
symmetric, incomplete, or symmetric depending whether θ is equal to −1, 0, or 1, respectively. The choice
θ = 1 ensures the adjoint consistency of the method. The term proportional to γ enforces the weak continuity
of the tangent component of E. The purpose of the term proportional to cα is to penalize ∇·(εEh) in H−α(Ω).
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The exponent α is somewhat similar to the exponent that is used in Costabel and Dauge [16] to define the
L2-weighted space that controls ∇·(εEh).

The discrete formulation considered in the rest of the paper consists of looking for (Eh, ph) ∈ Xh×Mh such
that the following holds for all (Fh, qh) ∈ Xh×Mh:

ah ((Eh, ph), (Fh, qh)) = (εg,Fh)Ω + cαh
2(1−α) (εg,∇qh)Ω , (4.14)

where (·, ·)D henceforth denotes the scalar product in L2(D).
To perform the consistency analysis of the method we are led to introduce

Zs(Ω) = {F ∈ Hs
0,curl (Ω) ; ∇×(κ∇×F) ∈ L2(Ω), ∇·(εF) ∈ L2(Ω)}. (4.15)

Owing to Theorem 2.1, it is a priori known that there exists s > 0 such that the solution to the boundary
value problem (2.10) is in Zs(Ω)∩Hs(Ω). We shall use the notation Zs instead of Zs(Ω) when the context is
unambiguous.

Proposition 4.1. Assuming (2.13), it is possible to extend the bilinear form ah(., .) to
[
(Zs + Xh)×H1

0(Ω)
]2

for all s > 0.

Proof. Note first that Mh ⊂ H1
0(Ω) and the extension of the bilinear form to scalar fields in H1

0(Ω) does not
pose any difficulty. We decompose ah into three pieces:

a0h((Eh, ph), (Fh, qh)) := ({{κ∇×Eh}} , [[Fh×n]])Σ∪Γ + θ ({{κ∇×Fh}} , [[Eh×n]])Σ∪Γ

a1h((Eh, ph), (Fh, qh)) := (κ∇×Eh,∇×Fh)ΩΣ
+ γh−1 ({{κ}} [[Eh×n]], [[Fh×n]])Σ∪Γ

a2h((Eh, ph), (Fh, qh)) := cα

(
h2α (∇·(εEh),∇·(εFh))ΩΣ

+ h2(1−α) (ε∇ph,∇qh)Ω

+ h(2α−1) ([[εEh·n]], [[εFh·n]])Σ

)
+ (ε∇ph,Fh)Ω − (εEh,∇qh)Ω .

The bilinear form a1h can clearly be extended to
[
(Zs + Xh)×H1

0(Ω)
]2

, since every function E in Zs is such
that [[E×n]]Σ∪Γ is zero. Hence, if either (E,F) ∈ Zs×(Zs + Xh) or (E,F) ∈ (Zs + Xh)×Zs, we set

a1h((E, p), (F, q)) := (κ∇×E,∇×F)ΩΣ
,

for all (p, q) ∈ H1
0(Ω). The bilinear form a2h can also be extended to

[
(Zs + Xh)×H1

0(Ω)
]2

, since every function
E in Zs is such that [[εE·n]]Σ is zero. Hence, if either (E,F) ∈ Zs×(Zs + Xh) or (E,F) ∈ (Zs + Xh)×Zs, we set

a2h((E, p), (F, q)) := cα

(
h2α (∇·(εE),∇·(εF))ΩΣ

+ h2(1−α) (ε∇p,∇q)Ω

)
+ (ε∇p,F)Ω − (εE,∇q)Ω .

for all (p, q) ∈ H1
0(Ω).

The question of the extension of a0h is more subtle, and we must now distinguish the trial and test spaces.
We are going to use Lemma A.3 that shows that the bilinear form (Hs(Ω) ∩ Hcurl(Ω))×Xh 3 (φ,Fh) 7−→∫
F
φ·(Fh×n) ∈ R is well defined for all F ∈ Fh. Let E be a member of Zs, then ∇×E ∈ Hs(Ω), s > 0 and

in particular, ∇×E ∈ Hσ(Ω) for some σ ∈ (0, 1
2 ). Owing to (2.13), κ ∈ W1,∞

Σ (Ω) so that κ∇×E ∈ Hσ(Ω),

see e.g. Bonito et al. [6]. Note in addition that E being a member of Zs implies that ∇×(κ∇×E) ∈ L2(Ω),
which in turn also implies that {{κ∇×E}}|Σ = κ∇×E|Σ. Hence, Lemma A.3 is used to justify the expression∫
F
κ∇×E·(Fh×n) for all F ∈ Fh and for all (E,Fh) ∈ Zs×Xh. The extension of a0h for (Eh,F) ∈ Xh×Zs is

justified similarly. The extension of a0h for (E,F) ∈ Zs×Zs is trivial since the tangent jumps of E and F across
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F are zero. Summing up, a0h can be extended to
[
(Zs + Xh)×H1

0(Ω)
]2

by setting

a0h((E + Eh, p), (F + Fh, q)) := (κ∇×E, [[Fh×n]])Σ∪Γ + ({{κ∇×Eh}} , [[Fh×n]])Σ∪Γ

+ θ (κ∇×F, [[Eh×n]])Σ∪Γ + θ ({{κ∇×Fh}} , [[Eh×n]])Σ∪Γ ,

for all (E,Eh) ∈ Zs×Xh, all (F,Fh) ∈ Zs×Xh, and all (p, q) ∈ H1
0(Ω). This ends the proof. �

Remark 4.1. One could avoid invoking Lemma A.3 in the above proof by using instead a result from Buffa and
Ciarlet [9] where it is shown that the bilinear form Hcurl(Ω)×Hcurl(Ω) 3 (φ,F) 7−→

∫
F
φ·(F×n) ∈ R is well

defined and continuous for all F ∈ Fh

Remark 4.2 (Continuous Approximation of p). Observe that the approximation of the Lagrange multiplier p is
globally continuous. This is critical to derive a global control of ∇·(εE) in H−α(Ω) (encoded in the bilinear form

a2h in the above proof) instead of
∏N
i=1 H−α(Ωi). We refer to Bonito and Guermond [5] for more precisions.

Lemma 4.1. Assume (2.13) and let (E, p) be the solution of (2.10). Let s > 0 be such that E ∈ Zs. The
following holds for any (F + Fh, q) ∈ (Zs + Xh)×H1

0(Ω):

ah ((E, p), (F + Fh, q)) = (εg,F + Fh)Ω + cαh
2(1−α) (εg,∇q)Ω .

Proof. Let us first observe that

ah ((E, p), (F + Fh, q)) = (κ∇×E,∇×(F + Fh))ΩΣ
+ (κ∇×E, [[Fh×n]])Σ∪Γ

+ (ε∇p,F + Fh)Ω + cαh
2(1−α)(ε∇p,∇q)Ω,

where all the terms make sense owing to the extension properties of ah stated in Proposition 4.1. We now test
(2.10) with F + Fh ∈ (Zs + Xh),

(∇×(κ∇×E),F)Ω +

N∑
i=1

(∇×(κ∇×E),Fh)Ωi + (ε∇p,F + Fh)Ω = (εg,F + Fh)Ω,

and we perform the integration by parts over Ω when the test function is F and over each sub-domain when
the test function is Fh,

(κ∇×E,∇×F)Ω +

N∑
i=1

(κ∇×E,∇×Fh)Ωi + (κ∇×E, [[Fh×n]])Σ∪Γ + (ε∇p,F + Fh)Ω = (εg,F + Fh)Ω.

Note that the term (κ∇×E, [[Fh×n]])Σ∪Γ is meaningful owing to Lemma A.3 and E being a member of Zs. This
implies that

ah ((E, p), (F + Fh, q)) = (εg,F + Fh)Ω + cαh
2(1−α)(ε∇p,∇q)Ω.

Upon testing again (2.10) with ∇q, q ∈ H1
0(Ω), we infer that (ε∇p,∇q)Ω = (εg,∇q)Ω, which in turn implies the

desired result. �
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4.3. Well posedness of the discrete formulation

We discuss in this section the existence and uniqueness of a solution (Eh, ph) to (4.14). This issue is addressed
by equipping Xh×Mh with the following discrete norm:

‖Fh, qh‖2h :=‖κ 1
2∇×Fh‖2L2(ΩΣ) + γh−1‖ {{κ}}

1
2 [[Fh × n]]‖2L2(Σ∪Γ)

+ cα

(
h2α‖∇·(εFh)‖2L2(ΩΣ) + h2(1−α)‖ε 1

2∇qh‖2L2(Ω)

+ h(2α−1)‖[[εFh·n]]‖2L2(Σ)

)
,

(4.16)

by proving a coercivity property, uniform in h, and by establishing some continuity estimates for the bilinear
form ah(., .). We first establish the coercivity of ah.

Proposition 4.2 (Coercivity). If θ ∈ {0, 1}, there exists γ0 > 0 and c(γ0) > 0, uniform with respect to h, so
that the following holds for all γ ≥ γ0 and for any 0 ≤ α ≤ 1:

ah((Eh, ph), (Eh, ph)) ≥ c(γ0)‖Eh, ph‖2h, ∀(Eh, ph) ∈ Xh×Mh, (4.17)

and this inequality holds for all γ > 0 with c(γ0) = 1 if θ = −1.

Proof. We first observe that

ah((Eh, ph), (Eh, ph)) = ‖Eh, ph‖2h + (1 + θ) ({{κ∇×Eh}} , [[Eh×n]])Σ∪Γ .

The conclusion is evident if θ = −1. Otherwise we have to control the term ({{κ∇×Eh}} , [[Eh×n]])Σ∪Γ. Invoking
a trace and a Young inequality we obtain

({{κ∇×Fh}} , [[Fh×n]])Σ∪Γ ≤
1

4
‖κ 1

2∇×Fh‖2L2(ΩΣ) + c0h
−1‖ {{κ}}

1
2 [[Fh×n]]‖2L2(Σ∪Γ).

Hence, if γ ≥ γ0 := 4c0, we infer that the following holds:

ah ((Eh, ph), (Eh, ph)) ≥ 1

2
‖Eh, ph‖2h ≥ 0. (4.18)

This completes the proof. �

We now establish the uniform boundedness of the bilinear form ah.

Proposition 4.3 (Continuity). For any s ∈
(
0, 1

2

)
, there is c > 0, uniform in h such that the following holds

for any 0 ≤ α ≤ 1 and for every (E, p) ∈ Zs×H1
0(Ω) and (Gh, dh), (Fh, qh) ∈ Xh×Mh:

c
ah ((E−Gh, p− dh), (Fh, qh))

‖Fh, qh‖h
≤ ‖E−Gh‖h + hα−1‖E−Gh‖L2(Ω)

+ hs‖κ∇×(E−Gh)‖Hs(Th) + h‖∇×κ∇×(E−Gh)‖L2(Th) (4.19)

+ h−α‖p− dh‖L2(Ω) + h( 1
2−α)‖p− dh‖L2(Σ).

where ‖.‖2L2(Th) :=
∑
K∈Th ‖.‖

2
L2(K) and ‖.‖2Hs(Th) :=

∑
K∈Th ‖.‖

2
Hs(K).
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Proof. Upon applying the Cauchy-Schwarz inequality we obtain

(κ∇×(E−Gh),∇×Fh)ΩΣ
+ γh−1 ({{κ}} [[(E−Gh)×n]], [[Fh×n]])Σ∪Γ

+ cα

(
h2α (∇·(ε(E−Gh)),∇·(εFh))ΩΣ

+ h2(1−α) (ε∇(p− dh),∇qh)Ω

+ h(2α−1) ([[ε(E−Gh)·n]], [[εFh·n]])Σ

)
,

≤ ‖Fh, qh‖h‖E−Gh, p− dh‖h.

We now bound separately the remaining terms appearing in the definition (4.13) of ah(., .):

− (ε(E−Gh),∇qh)Ω ≤ εmaxh
α−1‖∇qh‖L2(Ω)h

1−α‖E−Gh‖L2(Ω),

(ε∇(p− dh),Fh)Ω ≤ h
α‖∇·(εFh)‖L2(ΩΣ)h

−α‖p− dh‖L2(Ω)

+ h(α− 1
2 )‖[[εFh · n]]‖L2(Σ)h

( 1
2−α)‖p− dh‖L2(Σ),

where we used an integration by parts for the second estimate. We are now left with the consistency terms

({{κ∇×(E−Gh)}} , [[Fh×n]])Σ∪Γ + θ ({{κ∇×Fh}} , [[(E−Gh)×n]])Σ∪Γ . (4.20)

For the first term in (4.20), we apply Lemma A.3 with v = [[Fh×n]], which is a polynomial of degree `− 1, and
φ = {{κ∇×(E−Gh)}}. Then for any F ∈ Fh, we infer that

({{κ∇×(E−Gh)}} , [[Fh×n]])F ≤ ch
− 1

2 ‖[[Fh×n]]‖L2(F )

×
2∑
i=1

(
hs‖κ∇×(E−Gh)‖Hs(Ki) + h‖∇×κ∇×(E−Gh)‖L2(Ki)

+ ‖κ∇×(E−Gh)‖L2(Ki)

)
,

where K1,K2 ∈ Th such that F = K1 ∩K2. Hence, summing over all the faces we arrive at

({{κ∇×(E−Gh)}}, [[Fh×n]])Σ∪Γ ≤ c h−
1
2 ‖[[Fh×n]]‖L2(Σ∪Γ)

(
hs‖κ∇×(E−Gh)‖Hs(Th)

+ h‖∇×κ∇×(E−Gh)‖L2(Th) + ‖κ∇×(E−Gh)‖L2(Th)

)
.

For the second term in (4.20) we notice that [[(E−Gh)×n]] = −[[Gh×n]] owing to the regularity of E. Then by
using Lemma A.3 again, we arrive at

({{κ∇×Fh}} , [[(E−Gh)×n]])Σ∪Γ ≤ ch
− 1

2 ‖[[Gh×n]]‖L2(Σ∪Γ)‖κ∇×Fh‖L2(Th)

≤ ch− 1
2 ‖[[(E−Gh)×n]]‖L2(Σ∪Γ)‖κ∇×Fh‖L2(Th),

where we used the inverse inequalities

h‖∇×κ∇×Fh‖L2(Th) ≤ c‖κ∇×Fh‖L2(Th),

hs‖κ∇×Fh‖Hs(Th) ≤ c‖κ∇×Fh‖L2(Th).

The desired result is obtained by gathering the above estimates. �

The following result will be instrumental to apply the Nitsche-Aubin duality argument and derive a conver-
gence result in L2(Ω).
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Proposition 4.4 (Adjoint continuity). For any s ∈
(
0, 1

2

)
, there is c > 0, uniform in h such that for any

0 ≤ α ≤ 1, the following holds for every (E, p), (F, q) ∈ Zs×H1
0(Ω), Fh ∈ Yh, qh ∈Mh and (Gh, dh) ∈ Xh×Mh:

c
ah ((E−Gh, p− dh), (F− Fh, q − qh))

‖E−Gh, p− dh‖h
≤ ‖F− Fh, q − qh‖h + hα−1‖F− Fh‖L2(Ω)

+ hs‖κ∇×(F− Fh)‖Hs(Th)

+ h‖∇×κ∇×(F− Fh)‖L2(Th) (4.21)

+ h−α‖q − qh‖L2(Ω) + h( 1
2−α)‖q − qh‖L2(Σ).

Proof. The proof proceeds similarly as in the proof of Proposition 4.3. The only difference here is that we have
({{∇×(E−Gh)}} , [[(F− Fh)×n]])Σ∪Γ = 0, owing to the assumption that Fh ∈ Yh ⊂ Xh∩H1

0(Ω). This identity
makes the analysis of the consistency term (4.20) tractable. �

5. Convergence analysis for the boundary value problem

In the first part of this section, we prove two convergence results for the discrete problem (4.14) using the
discrete norm ‖·‖h, one assuming minimal regularity and the other assuming full smoothness. In the second part
of the section we use a Nitsche-Aubin duality argument to establish convergence in L2(Ω). The performance of
the method is numerically illustrated at the end of the section.

5.1. Convergence in the discrete norm.

We assume first that the solution to the boundary value problem (2.10) has minimal regularity properties,
and we start with the Galerkin orthogonality.

Lemma 5.1 (Galerkin Orthogonality). Assume (2.13), then the Galerkin orthogonality holds, i.e., let (E, p) be
the solution of (2.10) and (Eh, ph) be the solution of (4.14), then for any (Fh, qh) ∈ Xh×Mh

ah ((E−Eh, p− ph), (Fh, qh)) = 0. (5.1)

Proof. This is a direct consequence of Lemma 4.1 and formulation (4.14). �

Theorem 5.1. Let g ∈ L2(Ω) and τ ∈ (0,min(τε, τκ)) where τε and τκ are defined in Theorem 2.1. Let (E, p)

and (Eh, ph) be the solution of (2.10) and (4.14), respectively. Then, for any α ∈
(
`(1−τ)
`−τ , 1

]
, there exists c > 0,

uniform in h, such that

‖E−Eh, p− ph‖h ≤ chr‖g‖L2(Ω), (5.2)

where r = α− 1 + τ
(
1− α

`

)
if ∇·(εg) = 0 and r = min

(
1− α, α− 1 + τ

(
1− α

`

))
otherwise.

Proof. We first recall that, owing to Theorem 2.1, we have E ∈ Hτ (Ω)∩Hτ
0,curl (Ω), together with the estimates

‖E‖Hτ (Ω) + ‖∇×E‖Hτ (Ω) + ‖∇×(κ∇×E)‖L2(Ω) + ‖∇p‖L2(Ω) ≤ c ‖g‖L2(Ω).

We establish (5.2) by using the triangular inequality

‖E−Eh, p− ph‖h ≤ ‖E−KδE, 0‖h + ‖KδE− CghKδE, p− C
p
hp‖h

+ ‖ChKδE−Eh, Cphp− ph‖h,

for some δ > 0 to be defined later, and by bounding from above the three terms separately.
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Using the definition of ‖ · ‖h together with the approximation properties of Kδ, cf. (3.16)-(3.17)-(3.18), we
conclude that

‖E−KδE, 0‖h ≤ c
(
δτ‖∇×E‖Hτ (Ω) + hαδτ−1‖E‖Hτ (Ω) + hα−

1
2 ‖KδE‖L2(Σ)

)
.

Note that the estimate (3.17) is critical to obtain a bound that depends only on ‖∇×E‖Hτ (Ω) instead of

‖E‖H1+τ (Ω). To estimate the last term in the above inequality, we apply (A.5) with Θ = 1−2τ
2(1−τ) ,

hα−
1
2 ‖KδE‖L2(Σ) ≤ chα−

1
2 ‖KδE‖1−Θ

Hτ (Ω)‖KδE‖
Θ
H1(Ω)

≤ chα− 1
2 δΘ(τ−1)‖E‖Hτ (Ω) ≤ chα−

1
2 δτ−

1
2 ‖E‖Hτ (Ω).

Finally, we arrive at

‖E−KδE, 0‖h ≤ c
(
δτ + hαδτ−1 + hα−

1
2 δτ−

1
2

)
‖g‖L2(Ω). (5.3)

Let us now turn our attention to ‖KδE−CghKδE, p−C
p
hp‖h. Owing to the definition of Cgh and the regularity

of KδE, we have CghKδE ∈ H1
0(Ω) ⊂ H0,curl(Ω), so that we only have four terms to bound (the jumps of CghKδE

across the mesh interfaces and the tangent trace on Γ are zero, cf. Remark 4.1). Using the properties of Kδ and
Cgh together with (A.4) we deduce that

‖κ 1
2∇×(KδE− CghKδE)‖L2(Ω) ≤ c h`−1‖KδE‖H`(Ω) ≤ ch`−1δτ−`‖E‖Hτ (Ω),

hα‖∇· (ε(KδE− CghKδE)) ‖L2(ΩΣ) ≤ c hα+`−1‖KδE‖H`(ΩΣ) ≤ chα+`−1δτ−`‖E‖Hτ (Ω),

h1−α‖ε 1
2∇(p− Cphp)‖L2(Ω) ≤ c h1−α‖p‖H1

0(Ω),

hα−
1
2 ‖[[ε(KδE− CghKδE)·n]]‖L2(Σ) ≤ c hα−

1
2 ‖KδE− CghKδE‖L2(Σ)

≤ c hα− 1
2 ‖KδE− CghKδE‖

1− 1
2α

L2(Ω)‖KδE− C
g
hKδE‖

1
2α

Hα(Ω)

≤ c hα− 1
2h`(1− 1

2α )h(`−α) 1
2α ‖KδE‖H`(Ω)

≤ c hα+`−1δτ−`‖E‖Hτ (Ω).

When combining the above estimates, we obtain

‖KδE− CghKδE, p− C
p
hp‖h ≤ c

(
h`−1δτ−` + ξh1−α) ‖g‖L2(Ω), (5.4)

where ξ = 0 if ∇·(εg) = 0 and ξ = 1 otherwise (note that p = 0 when ∇·(εg) = 0).
The last term, ‖CghKδE − Eh, Cphp − ph‖h, is a little more subtle to handle. We start from the coercivity of

ah, (4.18), and use both the Galerkin orthogonality (5.1) and the continuity of ah, (4.19), with s = 1−α to get
the following estimate:

‖CghKδE−Eh, Cphp− ph‖h

≤ c
ah ((CghKδE−Eh, Cphp− ph), (CghKδE−Eh, Cphp− ph))

‖CghKδE−Eh, Cphp− ph‖h

≤ c
ah ((CghKδE−E, Cphp− p), (C

g
hKδE−Eh, Cphp− ph))

‖CghKδE−Eh, Cphp− ph‖h
≤ c

(
‖CghKδE−E, Cphp− p‖h + hα−1‖E− CghKδE‖L2(Ω)

+ h1−α‖κ∇×(E− CghKδE)‖H1−α(Ω) + h−α‖p− Cphp‖L2(Ω)

+ h‖∇×κ∇×(E− CghKδE)‖L2(Th) + h
1
2−α‖p− Cphp‖L2(Σ)

)
.
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We now handle each term in the right hand side separately. Using the triangle inequality ‖CghKδE−E, Cphp−p‖h ≤
‖CghKδE−KδE, C

p
hp− p‖h + ‖KδE−E, 0‖h and the estimates (5.3)-(5.4), we obtain

‖CghKδE−E, Cphp− p‖h ≤ c
(
δτ + hαδτ−1 + hα−

1
2 δτ−

1
2 + h`−1δτ−` + ξh1−α

)
‖g‖L2(Ω).

Similarly, we obtain

hα−1‖E− CghKδE‖L2(Ω) ≤ c
(
hα−1δτ + hα+`−1δτ−`

)
‖g‖L2(Ω),

h1−α‖κ∇×(E− CghKδE‖H1−α(Ω) ≤ c
(
h1−αδτ+α−1 + h`−1δτ−`

)
‖g‖L2(Ω).

Note that the previous computation is valid since 1− α ≤ τ owing to the assumption α ∈
(
`(1−τ)
`−τ , 1

)
. For the

last term involving E we use the commuting property δ̄∇×KδE = Kδ∇×E, see (3.19), to derive

h‖∇×(κ∇×(E− CghKδE))‖L2(Th) ≤ h‖∇×(κ∇×E)‖L2(Th) + h‖∇×(κ∇×KδE)‖L2(Th)

+ h‖∇×(κ∇×(KδE− CghKδE))‖L2(Th)

≤ c
(
h‖g‖L2(Ω) + h‖∇×KδE‖H1(Ω) + h`−1‖KδE‖H`(Ω)

)
≤ c

(
h‖g‖L2(Ω) + h‖Kδ∇×E‖H1(Ω) + h`−1δτ−`‖E‖Hτ (Ω)

)
≤ c

(
h+ hδτ−1 + h`−1δτ−`

)
‖g‖L2(Ω).

For the remaining terms involving p, we use (A.4) together with the approximation properties of Cph:

h−α‖p− Cphp‖L2(Ω) ≤ c h1−α‖p‖H1
0(Ω) ≤ cξh1−α‖g‖L2(Ω),

h
1
2−α‖p− Cphp‖L2(Σ) ≤ h

1
2−α‖p− Cphp‖

1− 1
2α

L2(Ω)‖p− C
p
hp‖

1
2α

Hα(Ω)

≤ c h 1
2−αh1− 1

2αh(1−α) 1
2α ‖p‖H1

0(Ω) ≤ cξh1−α‖g‖L2(Ω).

Gathering all the above estimates together with (5.3) and (5.4), we finally obtain

‖E−Eh, p− ph‖h ≤c
(
δτ + ξh1−α + h+ hδτ−1 + h`−1δτ−` + hα−1δτ

+ h1−αδτ+α−1 + hαδτ−1 + hα−
1
2 δτ−

1
2

)
‖g‖L2(Ω).

(5.5)

We want to use δ = hβ for some β ∈ (0, 1), i.e., δh−1 → +∞ as h→ 0. Once the negligible terms are removed
in (5.5), we derive the following estimate:

‖E−Eh, p− ph‖h ≤ c
(
hα−1δτ + ξh1−α + h`−1δτ−`

)
‖g‖L2(Ω).

Using δ = h1−α` implies that hα−1δτ = h`−1δτ−` and we arrive at

‖E−Eh, p− ph‖h ≤ c(hα−1+τ(1−α` ) + ξh1−α)‖g‖L2(Ω),

which leads to (5.2) with r := min
(
1− α, α− 1 + τ

(
1− α

`

))
if ∇·(εg) 6= 0 and r = α− 1 + τ

(
1− α

`

)
otherwise.

Note that the assumed lower bound on α ensures that we have a convergence result as h→ 0. �

Remark 5.1 (α = 1). Note that the best choice for α when ∇·(εg) = 0 is α = 1; the convergence rate is then
τ
(
1− 1

`

)
and it approaches the optimal rate τ as ` increases. When ∇·(εg) 6= 0, the best choice for α is such

that 1− α = α− 1 + τ
(
1− α

`

)
. This choice gives the following convergence rate τ

2 (1− 1
` ) < r = τ `−1

2`−τ <
τ
2 .
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We now derive a convergence estimate assuming that the solution of (2.10) is smooth. In the next theorem
we allow the parameter α to be any number in the interval [0, 1].

Theorem 5.2. Let g ∈ L2(Ω) and let (E, p) and (Eh, ph) be the solution of (2.10) and (4.14), respectively.
Assume moreover that E ∈ Hk+1(ΩΣ) and p ∈ Hk+α(ΩΣ) for some 0 < k ≤ ` − 1. Then there exists c > 0,
uniform in h, such that

‖E−Eh, p− ph‖h ≤ c hk
(
‖g‖L2(Ω) + ‖E‖Hk+1(ΩΣ) + ‖p‖Hk+α(ΩΣ)

)
. (5.6)

Proof. The proof is similar to that of Theorem 5.1. We start from the triangular inequality

‖E−Eh, p− ph‖h ≤ ‖E− ClhE, p− C
p
hp‖h + ‖ClhE−Eh, Cphp− ph‖h,

We bound the two terms in the right hand side separately. For the first one, we use the local approximation
properties of the operators Clh and Cph to derive

‖E− ClhE, p− C
p
hp‖h ≤ c

(
hk‖E‖Hk+1(ΩΣ) + hk+α‖E‖Hk+1(ΩΣ) + h−

1
2 ‖E− ClhE‖L2(Σ∪Γ)

+ h1−αhk+α−1‖p‖Hk+α(ΩΣ) + hα−
1
2 ‖E− ClhE‖L2(Σ)

)
.

Using (A.4) for any σ ∈
(

1
2 , 1
)
, we have

‖E− ClhE‖L2(Σ∪Γ) ≤ c ‖E− ClhE‖
1− 1

2σ

L2(ΩΣ)‖E− C
l
hE‖

1
2σ

Hσ(ΩΣ) ≤ c h
k+ 1

2 ‖E‖Hk+1(ΩΣ).

As a result, we obtain

‖E− ClhE, p− C
p
hp‖h ≤ ch

k
(
‖E‖Hk+1(ΩΣ) + ‖p‖Hk+α(ΩΣ)

)
. (5.7)

Now we turn our attention to ‖ClhE−Eh, Cphp− ph‖h. We use the coercivity of ah, the Galerkin orthogonality

and the continuity of ah (for any σ ∈
(
0, 1

2

)
) to get

‖ClhE−Eh, Cphp− ph‖h ≤ c
(
‖E− ClhE, p− C

p
hp‖h + hα−1‖E− ClhE‖L2(Ω)

+ hσ‖κ∇×(E− ClhE)‖Hσ(Th)

+ h‖∇×κ∇×(E− ClhE)‖L2(Th)

+ h−α‖p− Cphp‖L2(Ω) + h
1
2−α‖p− Cphp‖L2(Σ)

)
.

Using the approximation properties of Clh together with (5.7), we infer

‖E− ClhE, p− C
p
hp‖h ≤ ch

k
(
‖E‖Hk+1(ΩΣ) + ‖p‖Hk+α(ΩΣ)

)
,

hα−1‖E− ClhE‖L2(Ω) ≤ chk+α‖E‖Hk+1(ΩΣ),

hσ‖κ∇×(E− ClhE)‖Hσ(Th) ≤ chk‖E‖Hk+1(ΩΣ),

h−α‖p− Cphp‖L2(Ω) ≤ chk‖p‖Hk+α(ΩΣ).

For the last term involving p, we use (A.4) for some σ ∈
(

1
2 , 1
)
:

h
1
2−α‖p− Cphp‖L2(Σ) ≤ ch

1
2−α‖p− Cphp‖

1− 1
2σ

L2(ΩΣ)‖p− C
p
hp‖

1
2σ

Hσ(ΩΣ)

≤ ch 1
2−αhk+α− 1

2 ‖p‖Hk+α(ΩΣ) = chk‖p‖Hk+α(ΩΣ).
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For the last term involving E, we distinguish two cases depending whether k < 1 or k ≥ 1. If k < 1, we use an
inverse inequality together with the approximation properties of Clh to deduce that

h‖∇×κ∇×(E− ChE)‖L2(Th) ≤ h‖∇×κ∇×E‖L2(Ω) + ch‖ChE‖H2(Th)

≤ h‖g‖L2(Ω) + hk‖E‖Hk+1(ΩΣ).

If k ≥ 1, we use the local approximation properties of Clh to get

h‖∇×κ∇×(E− ChE)‖L2(Th) ≤ ch‖E− ChE‖H2(Th) ≤ chk‖E‖Hk+1(ΩΣ).

In both cases, we have:

h‖∇×κ∇×(E− ChE)‖L2(Th) ≤ chk
(
‖E‖Hk+1(ΩΣ) + ‖g‖L2(Ω)

)
.

Gathering all the above estimates and using (5.7) gives the desired result (5.6). �

Remark 5.2. Note that the error estimate (5.6) is optimal since it implies that ‖∇×(E − Eh)‖L2(ΩΣ) ≤ c hk,
which is the best that can be expected from piece-wise polynomial approximation of degree k. Note also that
there is no lower bound on α to get convergence when the solution of (2.10) is smooth, i.e., any α in the range
[0, 1] is acceptable.

5.2. Convergence in the L2-norm.

Before proving that the discrete solution converges to the exact solution in the L2-norm, we prove a global
version of Lemma A.3 that will be useful in the proof of Theorem 5.3.

Lemma 5.2. Let s ∈
(
0, 1

2

)
. Then there exists c > 0, uniform in h, such that the following holds, for any

ψ ∈ Hcurl(Ω) ∩Hs(Ω) and any Fh ∈ Xh:

|(ψ, [[Fh×n]])Σ∪Γ|

≤ c h− 1
2 ‖[[Fh×n]]‖L2(Σ∪Γ)

(
hs‖ψ‖Hs(Ω) + h‖∇×ψ‖L2(Ω)

)
. (5.8)

Proof. Let us consider ψ ∈ Hcurl(Ω)∩Hs(Ω) and Fh ∈ Xh. Notice that the left hand side is well defined owing
to Lemma A.3. We start from∣∣(ψ, [[Fh×n]]

)
Σ∪Γ

∣∣ ≤ |(ψ −Kδψ, [[Fh×n]])Σ∪Γ|︸ ︷︷ ︸
:=I1

+ |(Kδψ, [[Fh×n]])Σ∪Γ|︸ ︷︷ ︸
:=I2

,

for some δ to be defined later. We handle the two terms I1, I2 separately. For the first one, we apply Lemma A.3
with v = [[Fh×n]], φ = ψ −Kδψ and σ = s, and we sum over all the faces F ∈ Σ ∪ Γ. This leads to

I1 ≤ c h−
1
2 ‖[[Fh×n]]‖L2(Σ∪Γ)

(
hs‖ψ −Kδψ‖Hs(ΩΣ)

+ h‖∇×(ψ −Kδψ)‖L2(ΩΣ) + ‖ψ −Kδψ‖L2(ΩΣ)

)
≤ c h− 1

2 ‖[[Fh×n]]‖L2(Σ∪Γ)

(
hs‖ψ −Kδψ‖Hs(ΩΣ)

+ h‖∇×ψ‖L2(ΩΣ) + h‖∇×Kδψ‖L2(ΩΣ) + ‖ψ −Kδψ‖L2(ΩΣ)

)
.
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Using the approximation properties of Kδ (3.16) and (3.18), we arrive at

I1 ≤ c h−
1
2 ‖[[Fh×n]]‖L2(Σ∪Γ)

(
hs‖ψ‖Hs(ΩΣ)

+ h‖∇×ψ‖L2(ΩΣ) + δs‖ψ‖Hs(ΩΣ) + h‖Kδψ‖H1(ΩΣ)

)
≤ c h− 1

2 ‖[[Fh×n]]‖L2(Σ∪Γ)

(
(hs + δs + hδs−1)‖ψ‖Hs(ΩΣ) + h‖∇×ψ‖L2(ΩΣ)

)
.

We handle I2 by using the Cauchy-Schwarz inequality on every ∂Ωi, i = 1, · · · , N .

I2 ≤ c h−
1
2 ‖[[Fh×n]]‖L2(Σ∪Γ)

N∑
i=1

h
1
2 ‖Kδψ‖L2(∂Ωi).

We use (A.5) on every Ωi with Θ := 1−2s
2(1−s) to obtain

I2 ≤ c h−
1
2 ‖[[Fh×n]]‖L2(Σ∪Γ)

N∑
i=1

h
1
2 ‖Kδψ‖1−Θ

Hs(Ωi)
‖Kδψ‖ΘH1(Ωi)

≤ c h− 1
2 ‖[[Fh×n]]‖L2(Σ∪Γ)h

1
2 ‖Kδψ‖1−Θ

Hs(ΩΣ)‖Kδψ‖
Θ
H1(ΩΣ),

where the constant c depends on N , which we recall is a fixed number. Using again the approximation properties
of Kδ we infer that

I2 ≤ c h−
1
2 ‖[[Fh×n]]‖L2(Σ∪Γ)h

1
2 δ(s−1)Θ‖ψ‖Hs(ΩΣ)

≤ c h− 1
2 ‖[[Fh×n]]‖L2(Σ∪Γ)h

1
2 δs−

1
2 ‖ψ‖Hs(ΩΣ).

Then (5.8) is obtained by gathering the above estimates and setting δ = h. �

Remark 5.3 (Alternative Decomposition). Estimate (5.8) can alternatively be derived using the decomposition
ψ = ψ − Clhψ + Clhψ instead of ψ = ψ −Kδψ +Kδψ.

Theorem 5.3. Let g ∈ L2(Ω) and let (E, p) be the solution of (2.10). Let τ < min(τε, τκ) where τε and τκ are

defined in Theorem 2.1. Let (Eh, ph) be solution of (4.14). For any α ∈
(
`(1−τ)
`−τ , 1

)
, there exists c > 0, uniform

in h, such that

‖E−Eh‖L2(Ω) ≤ c hr1+r2‖g‖L2(Ω), (5.9)

with r1 := min
(
1− α, α− 1 + τ

(
1− α

`

))
and r2 = r1 if ∇·(εg) 6= 0 and r2 = α − 1 + τ

(
1− α

`

)
if ∇·(εg) = 0.

If in addition E ∈ Hk+1(ΩΣ) and p ∈ Hk+α(ΩΣ) for some 0 < k < `− 1, then the following holds:

‖E−Eh‖L2(Ω) ≤ c hk+r1
(
‖g‖L2(Ω) + ‖E‖Hk+1(ΩΣ) + ‖p‖Hk+α(ΩΣ)

)
. (5.10)

Proof. We are going to use a duality argument à la Nitsche-Aubin. In the following we denote a1
h the extension

to
[
(Zτ (Ω) + Xh)×H1

0(Ω)
]2

of the bilinear form defined on [Xh×Mh]
2

in (4.13) with θ = 1. Then the following
symmetry property holds:

a1
h ((F, q), (G, r)) = a1

h ((G,−r), (F,−q)) .

for all ((F, q), (G, r)) ∈
[
(Zτ (Ω) + Xh)×H1

0(Ω)
]2

. Let (w, q) ∈ H0,curl(Ω)×H1
0(Ω) be the solution of the following

(adjoint) problem:

∇×(κ∇×w)− ε∇q = ε (E−Eh) , ∇·(εw) = 0.
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Recall that Theorem 2.1 implies that w ∈ Zτ (Ω) ∩Hτ (Ω) and that

‖w‖Hτ (Ω) + ‖κ∇×w‖Hτ (Ω) + ‖∇×κ∇×w‖L2(Ω) ≤ c ‖E−Eh‖L2(Ω). (5.11)

The definition of the pair (w, q) implies that (ε∇q,∇ϕ)Ω = −(ε(E − Eh,∇ϕ) for all ϕ ∈ H1
0(Ω), and the

following identities hold:

‖ε 1
2 (E−Eh)‖2L2(Ω) = a1

h ((w,−q), (E−Eh, ph − p)) + cαh
2(1−α) (ε∇q,∇(ph − p))Ω

= a1
h ((E−Eh, p− ph), (w, q)) + cαh

2(1−α) (ε(E−Eh),∇(p− ph))Ω

= ah ((E−Eh, p− ph), (w, q)) + cαh
2(1−α) (ε(E−Eh),∇(p− ph))Ω

+ (1− θ) ({{κ∇×w}} , [[−Eh×n]])Σ∪Γ .

We now use the Galerkin orthogonality and we introduce the global approximation CghKδw, with δ = h1−α` ,
and the pressure approximation Cphq:

‖ε 1
2 (E−Eh)‖2L2(Ω) = ah ((E−Eh, p− ph), (w − CghKδw, q − C

p
hq))

+ cαh
2(1−α) (ε(E−Eh),∇(p− ph))Ω − (1− θ) (κ∇×w, [[Eh×n]])Σ∪Γ . (5.12)

Note that we replaced {{κ∇×w}} by κ∇×w since the tangent component of κ∇×w is continuous across the
interfaces owing to ∇×(κ∇×w) ∈ L2(Ω).

We now handle the three terms in the right hand side separately. For the first one, we use Proposition 4.4
with s = 1− α, F = w and Fh = CghKδw (note that Fh ∈ Yh ⊂ Xh ∩H0,curl(Ω)); we then infer that∣∣ah((E−Eh, p− ph), (w − CghKδw, q − C

p
hq)
)∣∣ ≤

c ‖E−Eh, p− ph‖h
(
‖w − CghKδw, q − C

p
hq‖h

+ hα−1‖w − CghKδw‖L2(Ω) + h−α‖q − Cphq‖L2(Ω) + h
1
2−α‖q − Cphq‖L2(Σ)

+ h‖∇×κ∇×(w − CghKδw)‖L2(Th) + h1−α‖∇×(w − CghKδw)‖H1−α(Ω)

)
.

The right hand side has already been estimated in the proof of Theorem 5.1. We then have∣∣ah((E−Eh, p− ph),(w − CghKδw, C
p
hq − q)

)∣∣
≤ c ‖E−Eh, p− ph‖hhr1‖E−Eh‖L2(Ω).

(5.13)

The second term in (5.12) is estimated by using the Cauchy-Schwarz inequality, the definition of the norm ‖ · ‖h
and the inequality r1 ≤ 1− α,∣∣∣h2(1−α) (ε(E−Eh),∇(p− ph))Ω

∣∣∣ ≤ c h1−α‖∇(p− ph)‖L2(Ω)h
1−α‖E−Eh‖L2(Ω)

≤ c ‖E−Eh, p− ph‖hhr1‖E−Eh‖L2(Ω). (5.14)

The last term in (5.12) is estimated by using Lemma 5.2 with ψ := κ∇×w and s := τ :∣∣(1− θ)(κ∇×w, [[Eh×n]]
)

Σ∪Γ

∣∣
≤ c ‖E−Eh‖h

(
hτ‖κ∇×w‖Hτ (Ω) + h‖∇×(κ∇×w)‖L2(Ω)

)
≤ c ‖E−Eh‖h hr1‖E−Eh‖L2(Ω), (5.15)
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where we have used (5.11) and r1 ≤ τ
2 < τ . Upon inserting (5.13)-(5.14)-(5.15) in (5.12) we obtain

‖ε 1
2 (E−Eh)‖2L2(Ω) ≤ ch

r1‖E−Eh‖L2(Ω)‖E−Eh, p− ph‖h.

Owing to the uniform positivity of ε, this leads to:

‖E−Eh‖L2(Ω) ≤ chr1‖E−Eh, p− ph‖h.

Now we consider two cases. Assuming only minimal regularity, Theorem 5.1 gives a bound on ‖E−Eh, p−ph‖h
that leads to (5.9). If E and p are piecewise smooth, then we can apply Theorem 5.2 and we obtain (5.10). �

Remark 5.4. Let τ ∈ (0, 1
2 ) and denote (E, p) the solution of (2.10). Assume that E ∈ Hτ (Ω) and E /∈ Hτ+

(Ω)

for all τ+ > τ . Then, irrespective of the value of ∇·(εg), the best choice for α is α = `(2−τ)
2`−τ , which gives the

convergence rate r1 +r2 = τ `−1
`− τ2

; this convergence rate approaches the optimal rate, τ , when the approximation

degree ` is large. Note also that α is close to 1 when ` is large.

Remark 5.5. Note that the degree of the polynomials used for Mh is not involved in the convergence rate when
minimal regularity is assumed. This means that we can use different degrees of polynomials for Xh and Mh,
and that it is sufficient to take polynomials of degree 1 for Mh to get convergence.

5.3. Numerical illustrations

In this section we illustrate numerically the performance of the method on a boundary value problem on the
L-shaped domain

Ω = (−1, 1)2\ ([0,+1]×[−1, 0]) .

We assume that Ω is composed of three subdomains:

Ω1 = (0, 1)2, Ω2 = (−1, 0)×(0, 1), Ω3 = (−1, 0)2.

We use κ ≡ 1 in Ω, ε|Ω2
= 1 and ε|Ω1

= ε|Ω3
=: εr. Denoting λ > 0 a real number such that tan

(
λπ
4

)
tan

(
λπ
2

)
=

εr, we define the scalar potential Sλ(r, θ) = rλφλ(θ), where (r, θ) are the polar coordinates, and φλ is defined
by

φλ(θ) =


sin(λθ) if 0 ≤ θ < π

2 ,
sin(λ2 π)
cos(λ4 π)

cos
(
λ
(
θ − 3

4π
))

if π
2 ≤ θ < π,

sin
(
λ
(

3
2π − θ

))
if π ≤ θ ≤ 3π

2 .

Then we solve the problem

∇×∇×E = 0, ∇·(εE) = 0, E×n|∂Ω = ∇Sλ×n. (5.16)

The exact solution is E = ∇Sλ∈ Hλ(Ω). We present two series of simulations in Table 1. We use λ = 0.535 in
Table 1(a) and λ = 0.24 in Table 1(b), which gives εr ' 0.5 and εr ' 7.55 10−2, respectively. The relative error
in the L2-norm is reported in the column “rel. err.” and the convergence rate is reported in the column “coc”.
Several values of α are used to evaluate the effect of λ and α on the convergence rates. We observe that the
convergence rate is quasi-optimal when α is close to 1, which is consistent with Remark 5.1, since (5.16) can be
re-written in the form (2.10) with ∇·(εg) = 0.

It has been pointed out in the literature (see e.g. Costabel and Dauge [16, §8.3.1], Duan et al. [19], Badia and
Codina [4]) that it is possible to build special meshes allowing the existence of C1 interpolation operators, i.e.,
it is possible to represent gradients on these meshes with optimal approximation properties. We now investigate
theses possibilities with P1 and P2 finite elements. We solve again the above boundary value problem with
λ = 0.535 and α = 0.9. For the P1 approximation, we construct Powell-Sabin type meshes (see Powell and
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Table 1. L2-errors and convergence rates with ` = 2. The convergence rates are almost
optimal for α = 0.9 in both cases.

(a) L2-errors and convergence rates for λ = 0.535

h
α = 0.4 α = 0.6 α = 0.9 α = 1.0

rel. err. coc rel. err. coc rel. err. coc rel. err. coc
0.2 2.332E-1 - 1.444E-1 - 1.249E-1 - 1.297E-1 -
0.1 2.473E-1 -0.08 1.168E-1 0.31 8.846E-2 0.50 9.167E-2 0.50
0.05 2.631E-1 -0.09 9.452E-2 0.31 6.186E-2 0.52 6.392E-2 0.52
0.025 2.797E-1 -0.09 7.700E-2 0.30 4.289E-2 0.53 4.427E-2 0.53
0.0125 2.968E-1 -0.09 6.312E-2 0.29 2.962E-2 0.53 3.059E-2 0.53

(b) L2-errors and convergence rates for λ = 0.24

h
α = 0.4 α = 0.6 α = 0.9 α = 1.0

rel. err. coc rel. err. coc rel. err. coc rel. err. coc
0.2 5.773E-1 - 4.739E-1 - 4.426E-1 - 4.495E-1 -
0.1 6.209E-1 -0.11 4.507E-1 0.07 3.801E-1 0.22 3.838E-1 0.23
0.05 6.711E-1 -0.11 4.413E-1 0.03 3.259E-1 0.22 3.272E-1 0.23
0.025 7.180E-1 -0.10 4.452E-1 -0.01 2.788E-1 0.23 2.788E-1 0.23
0.0125 7.564E-1 -0.08 4.602E-1 -0.05 2.380E-1 0.23 2.376E-1 0.23

Sabin [31]) and compare the results obtained on these meshes with those obtained on generic Delaunay meshes
(see Table 2(a)). We indeed observe an improvement since now the convergence rate is optimal, i.e., close to
0.535. For the P2 approximation we construct Hsieh-Clough-Tocher meshes, see Clough and Tocher [14, item
4, p. 520]. It is possible to construct on these meshes P3 finite element spaces containing C1 functions with
optimal approximation properties. Then, the standard vector-valued P2 finite element spaces constructed on
these meshes contains enough gradients. We compare the results obtained on Hsieh-Clough-Tocher meshes with
those obtained on generic Delaunay meshes (see Table 2(b)). We do not observe any significant improvement,
since the optimal order was already numerically achieved on the generic Delaunay meshes.

6. Eigenvalue problem

We extend in this section the theory introduced above to eigenvalue problems. We want to establish an
approximation result for the solutions to the following problem: Find (E, λ) ∈ [H0,curl(Ω)∩Hdiv (Ω, ε)]×R such
that

∇×κ∇×E = λεE. (6.1)

We restrict ourselves in the rest of this section to the symmetric variant of the bilinear form ah defined in (4.13),
i.e., we set θ = 1. We finally assume from now on that α is chosen as in Theorem 5.1, i.e.,

α ∈
(
`(1− τ)

`− τ
, 1

)
, (6.2)

where τ is the minimal regularity index of the problem (2.10) as defined in Theorem 2.1. In the following we
set r := min

(
1− α, α− 1 + τ

(
1− α

`

))
.

6.1. Framework

Let us equip L2(Ω) with the inner product (f ,g)ε :=
∫

Ω
εf ·g. This inner product is equivalent to the usual

L2-inner product owing to (2.13). The associated norm is denoted ‖ · ‖ε.
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Table 2. L2-errors and convergence rates for λ = 0.535, α = 0.9 on different kinds of meshes

(a) L2-errors and convergence rates for ` = 1

h
Delaunay mesh Powell-Sabin mesh

rel.err coc rel. err coc
0.2 2.166E-1 - 1.742E-1 -
0.1 1.652E-1 0.39 1.246E-1 0.48
0.05 1.268E-1 0.38 8.711E-2 0.52
0.025 9.821E-2 0.37 6.052E-2 0.53
0.0125 7.758E-2 0.34 4.200E-2 0.53

(b) L2-errors and convergence rates for ` = 2

h
Delaunay mesh Hsieh-Clough-Tocher mesh

rel.err coc rel. err coc
0.2 1.297E-1 - 1.359E-1 -
0.1 9.167E-2 0.50 9.446E-2 0.53
0.05 6.392E-2 0.52 6.535E-2 0.53
0.025 4.427E-2 0.53 4.515E-2 0.53
0.0125 3.059E-2 0.53 3.117E-2 0.53

For any g ∈ L2(Ω), we denote (E, p) the solution of (2.10) and we set Ag := E. This defines an operator
A : L2(Ω)→ L2(Ω) that is self-adjoint and compact (cf. Theorem 2.1). We now define two families of discrete
operators Eh : L2(Ω) −→ Xh and Ph : L2(Ω) −→ Mh so that for any g ∈ L2(Ω), the pair (Ehg,Phg) solves
(4.14). Then we finally define

Ah : L2(Ω) −→ Xh +∇Mh ⊂ L2(Ω)

g 7−→ Ehg − cαh2(1−α)∇Phg.
(6.3)

We want to study the spectrally correctness of the family {Ah} in the following sense:

Theorem 6.1 (Spectral correctness Babuška and Osborn [3], Osborn [30]). Let X be an Hilbert space and
A : X → X be a self-adjoint compact operator. Let Θ = {hn; n ∈ N} be a discrete subset of R such that hn → 0
as n→ +∞. Assume that there exists a family of operators Ah : X → X, h ∈ Θ, such that:

• Ah is a linear self-adjoint operator, for all h ∈ Θ.
• Ah converges pointwise to A.
• The family is collectively compact.

Let µ be an eigenvalue of A of multiplicity m and let {φj}, j = 1, · · · ,m be a set of associated orthonormal
eigenvectors.

(i) For any ε > 0 such that the disk B(µ, ε) contains no other eigenvalues of A, there exists hε such that, for
all h < hε, Ah has exactly m eigenvalues (repeated according to their multiplicity) in the disk B(µ, ε).

(ii) In addition, for h < hε, if we denote µh,j, j = 1, · · · ,m the set of the eigenvalues of Ah in B(µ, ε), there
exists c > 0 such that

c|µ− µh,j | ≤
m∑

j,l=1

| ((A−Ah)φj , φl)X |+
m∑
j=1

‖(A−Ah)φj‖2X . (6.4)

6.2. Approximation result

We start by proving that the operators {Ah} are self-adjoint, then we prove the pointwise convergence, and
we finally establish the collective compactness.
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Lemma 6.1. For any h, Ah : L2(Ω)→ L2(Ω) is a self-adjoint operator, i.e., for any e, f ∈ L2(Ω), the following
holds

(Ahe, f)ε = (e, Ahf)ε . (6.5)

Proof. Let e, f ∈ L2(Ω). By definition we have

ah ((Ehe,Phe), (Ehf ,−Phf)) = (e, Ehf)ε − cαh
2(1−α) (e,∇Phf)ε = (e, Ahf)ε .

Using the symmetry properties of ah, we infer

ah ((Ehe,Phe), (Ehf ,−Phf)) = ah ((Ehf ,Phf), (Ehe,−Phe)

= (f , Ehe)ε − cαh
2(1−α) (f ,∇Phe)ε = (f , Ahe)ε ,

thereby proving that the operator Ah is self-adjoint on the Hilbert space L2(Ω) equipped with the inner product
(·, ·)ε. �

Lemma 6.2. Under the above assumptions, there exists c > 0, uniform with respect to h such that,

∀e ∈ L2(Ω), ‖Ahe−Ae‖ε ≤ ch2r‖e‖ε. (6.6)

Proof. Let Ae ∈ L2(Ω) and p ∈ H1
0(Ω) such that ∇×(κ∇×Ae) + ε∇p = εe. Using the triangular inequality,

Theorems 5.1 and 5.3, the equivalence between the norms on L2(Ω) and the fact that r ≤ 1− α, we infer that

‖Ae−Ahe‖ε ≤ ‖Ae− Ehe‖ε + cαh
2(1−α)‖∇Phe−∇p‖ε + h2(1−α)‖∇p‖ε

≤ c(h2r‖e‖ε + h1−α‖Ae− Ehe, p− Phe‖h + h2(1−α)‖e‖ε) ≤ c h2r‖e‖ε,

which concludes the proof. �

Note that the above result is stronger than the pointwise convergence hypothesis, i.e., Ah converges in
norm to A. Now let us turn our attention to the question of collective compactness. Recall that a set A :=
{Ah ∈ L(X;X), h ∈ Θ} is said to be collectively compact if, for each bounded set U ⊂ X, the image set
AU := {Ahg, g ∈ U, Ah ∈ A} is relatively compact in X.

Lemma 6.3. The family {Ah}h>0 is collectively compact under the above assumptions provided α ∈
(
`(1−τ)
`−τ , 1

)
.

Proof. Owing to the compact embedding Hs(Ω) ⊂ L2(Ω) for any s > 0, it is sufficient to prove that there exists
s > 0 and c > 0 such that, for any g ∈ L2(Ω) and any h > 0,

‖Ahg‖Hs(Ω) ≤ c‖g‖L2(Ω).

Let us take g ∈ L2(Ω). Owing to the definition of Xh and Mh, we know that Ahg ∈ Hs(Ω) for any s ∈
(
0, 1

2

)
.

Moreover, there exists c, only depending on s and the shape regularity of the mesh family, such that the following
inverse inequality holds:

‖Ahg‖Hs(Ω) ≤ ch−s‖Ahg‖L2(Ω).

Let us consider s < r and notice that 2s < τ . Using the triangular inequality, interpolation results, the above
inverse inequality together with Theorems 5.3 and 2.1 leads to:

‖Ahg‖Hs(Ω) ≤ ‖Ahg −Ag‖Hs(Ω) + ‖Ag‖Hs(Ω)

≤ c ‖Ahg −Ag‖
1
2

L2(Ω)‖Ahg −Ag‖
1
2

H2s(Ω) + c ‖g‖L2(Ω)

≤ c hr‖g‖
1
2

L2(Ω)

(
h−s‖Ahg‖

1
2

L2(Ω) + ‖Ag‖
1
2

H2s(Ω)

)
+ c ‖g‖L2(Ω)

≤ c
(
hr−s + 1

)
‖g‖L2(Ω).
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This implies the collective compactness of {Ah} since r > s. �

We conclude that the approximation is spectrally correct in the sense of Theorem 6.1 by combining Lem-
mas 6.1, 6.2, 6.3.

6.3. Numerical illustration for α < 1

In this section, we present some eigenvalues computations. We consider the square Ω = (−1, 1)2 in the plane.
We divide Ω into four subdomains

Ω1 = (0, 1)2, Ω2 = (−1, 0)×(0, 1), Ω3 = (−1, 0)2, Ω4 = (0, 1)×(−1, 0).

We use κ ≡ 1 in Ω, ε|Ω1
= ε|Ω3

= 1 and ε|Ω2
= ε|Ω4

= εr. Benchmark results for this checkerboard problem

are available in Dauge [17] for ε−1
r ∈ {2, 10, 100, 108}. Tables 3 and 4 show results for εr = 0.5 and εr = 0.1

respectively. The ratio |λc−λr|
λr

is reported in column “rel. err.”, where λc and λr are the computed and
reference eigenvalues, respectively. The reference values are those from the benchmark. The computed order
of convergence is shown in the column “coc”. The computations have been done using ARPACK (cf. Lehoucq
et al. [26]) with tolerance 10−8. Note that the computed order of convergence seems to reach a constant value
for sufficiently small h, for every eigenvalue, as expected.

Table 3. Approximation of the first four eigenvalues for εr = 0.5. We used α = 0.7 in the simulations.

h
λr ' 3.3175 λr ' 3.3663 λr ' 6.1863 λr ' 13.926

rel. err. coc rel. err. coc rel. err. coc rel. err. coc
0.2 9.364E-4 - 3.943E-3 - 1.439E-1 - 6.104E-1 -
0.1 1.833E-4 2.35 2.147E-3 0.88 1.734E-4 9.70 4.484E-1 0.44
0.05 3.751E-5 2.29 1.188E-3 0.85 2.241E-5 2.95 1.599E-1 1.49
0.025 8.405E-6 2.16 6.463E-4 0.88 2.833E-6 2.98 1.120E-5 13.8
0.0125 2.081E-6 2.01 3.439E-4 0.91 3.667E-7 2.95 1.478E-6 2.92

Table 4. Approximation of the first four eigenvalues for εr = 0.1. We used α = 0.8 in the simulations.

h
λr ' 4.5339 λr ' 6.2503 λr ' 7.0371 λr ' 22.342

rel. err. coc rel. err. coc rel. err. coc rel. err. coc
0.2 4.559E-1 - 6.052E-1 - 6.410E-1 - 8.869E-1 -
0.1 2.859E-1 0.67 4.731E-1 0.36 5.310E-1 0.27 8.512E-1 0.06
0.05 3.306E-2 3.11 2.982E-1 0.67 3.763E-1 0.50 8.033E-1 0.08
0.025 2.154E-6 13.9 7.748E-2 1.94 1.772E-1 1.09 7.406E-1 0.12
0.0125 2.608E-7 3.05 3.258E-3 4.57 5.946E-7 18.2 6.602E-1 0.17

6.4. The case α = 1

We have shown that the numerical method is optimally convergent with α = 1 for the boundary value
problem (2.10) if ∇·(εg) = 0. It is then reasonable to investigate the convergence properties of the method for
the eigenvalue problem with α = 1 even though the theoretical analysis seems to show that there might be a loss
of compactness in this case; i.e., we cannot apply Theorem 6.1. We investigate this issue by solving again the
checkerboard problem introduced in the previous section and by comparing the results obtained with α = 0.7
and α = 1. We compute the first 10 eigenvalues for εr = 0.5 and report the results in Table 5 for P1 finite
elements and Table 6 for P2 finite elements. The typical meshsize in these simulations is 0.025. Inspection of
these tables show that the approximation with α = 1 is not spectrally correct. Other results on meshes with
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different meshsizes or structure (Delaunay, Powell-Sabin or HCT), not reported here, show the same type of
behavior, i.e., there are spurious eigenvalues when α = 1. This series of numerical tests confirms the sharpness
on the upper bound on α stated in Lemma 6.3.

Table 5. Approximation of the first ten eigenvalues with P1 elements and εr = 0.5. Compar-
ison between α = 0.7 and α = 1.0.

λ
α = 0.7 α = 1.0

app. value rel. error app. value rel. error
3.31755 3.31844 2.70E-4 3.31790 1.06E-4
3.36632 3.37816 3.51E-3 3.36786 4.56E-4
6.18639 6.18732 1.50E-4 3.91497 3.67E-1
13.9263 13.9321 4.14E-4 3.91616 7.18E-1
15.0830 15.0888 3.88E-4 4.14335 7.25E-1
15.7789 15.7859 4.48E-4 4.29445 7.27E-1
18.6433 18.6555 6.53E-4 4.30863 7.68E-1
25.7975 25.8163 7.29E-4 15.0191 4.17E-1
29.8524 29.8684 5.36E-4 35.7192 1.96E-1
30.5379 30.5643 8.66E-4 305.349 9.00E0

Table 6. Approximation of the first ten eigenvalues with P2 elements and εr = 0.5. Compar-
ison between α = 0.7 and α = 1.0.

λ
α = 0.7 α = 1.0

app. value rel. error app. value rel. error
3.31755 3.31758 8.55E-6 3.31756 2.30E-6
3.36632 3.36857 6.68E-4 3.36634 3.62E-6
6.18639 6.18641 3.14E-6 4.28879 3.07E-1
13.9263 13.9265 1.05E-5 4.29153 6.92E-1
15.0830 15.0832 1.14E-5 4.30113 7.15E-1
15.7789 15.7791 1.36E-5 4.30145 7.27E-1
18.6433 18.6436 1.52E-5 4.30683 7.69E-1
25.7975 25.7979 1.36E-5 12.8213 5.03E-1
29.8524 29.8530 2.04E-5 37.1980 2.46E-1
30.5379 30.5395 5.43E-5 1308.73 4.19E+1
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Appendix A. Technical Lemmas

Let {Th}h>0 be an affine shape-regular mesh family in R3. Let TK : K̂ −→ K be the affine mapping that

maps the reference element K̂ to K and let JK be the Jacobian of TK . It is a standard result that there are

constants that depend only on K̂ and the shape regularity constants of the mesh family so that

‖JK‖ ≤ chK , ‖J−1
K ‖ ≤ ch

−1
K , |det(JK)| ≤ chdK , |det(J−1

K )| ≤ ch−dK , (A.1)

where hK is the diameter of K.
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Lemma A.1. For all s ∈ [0, 1], there is a constant c, uniform with respect to the mesh family, so that the
following holds for all cells K ∈ Th and all ψ ∈ Hs(K) with zero average over K:

‖ψ̂‖Hs(K̂) ≤ ch
s− d2
K ‖ψ‖Hs(K), where ψ̂(x) := ψ(TK(x)) (A.2)

Proof. Upon making the change of variable x = TK(x̂) we obtain

‖ψ̂‖L2(K̂) = |det(JK)|− 1
2 ‖ψ‖L2(K) ≤ ch

− d2
K ‖ψ‖L2(K).

Likewise, using the fact that ψ̂ is of zero average, the Poincaré inequality implies

‖ψ̂‖H1(K̂) =
(
‖ψ̂‖2

L2(K̂)
+ ‖∇ψ̂‖2

L2(K̂)
)
) 1

2 ≤ (cp(K̂) + 1)
1
2 ‖∇̂ψ̂‖H1(K̂)

≤ c|det(JK)|− 1
2 ‖JK‖‖∇ψ‖L2(K) ≤ ch

− d2 +1

K ‖ψ‖H1(K).

Then, the Riesz-Thorin theorem implies that

‖ψ̂‖Ḣs(K̂) ≤ c h
s− 3

2

K ‖ψ‖Ḣs(K),

where we defined Ḣs(E) := [L̇2(E), Ḣ1(E)]s,2 with L̇2(E) and Ḣ1(E) being the subspaces of the functions of
zero average in L2(E) and H1(E), respectively. We conclude using Lemma A.2 �

Lemma A.2. The spaces [L̇2(E), Ḣ1(E)]s and [L2(E),H1(E)]s ∩ L̇2(E) are identical and the induced norms

are identical, i.e., ‖v‖Ḣs(E) = ‖v‖Hs(E) for all v ∈ [L2(E),H1(E)]s ∩ L̇2(E).

Proof. One can use Lemma A1 from Guermond [23] with T being the projection onto L̇2(Ω). �

We now state the main result of this section. It is a variant of Lemma 8.2 in Buffa and Perugia [10] with
the extra term ‖φ‖L2(K). Our proof slightly differs from that in Buffa and Perugia [10] since the proof therein
did not appear convincing to us (actually, the embedding inequality at line 9, page 2224 in Buffa and Perugia
[10] has a constant that depends on the size of the cell; for instance, using φ = 1 in this inequality yields a
contradiction. As result the estimate (8.11) in [10] is not uniform with respect to h).

Lemma A.3. For all k ∈ N and all σ ∈ (0, 1
2 ) there is c, uniform with respect to the mesh family, so that the

following holds for all faces F ∈ Fh in the mesh, all polynomial function v of degree at most k, and all function
φ ∈ Hσ(K) ∩H(curl,K)∫

F

(v×n)·φ ≤ c‖v‖L2(F )h
− 1

2

F (hσK‖φ‖Hσ(K) + hK‖∇×φ‖L2(K) + ‖φ‖L2(K)), (A.3)

where K is either one of the two elements sharing the face F .

Proof. We restrict ourselves to three space dimensions. In two space dimensions φ is scalar-valued and the proof
must be modified accordingly. Let K be either one of the two elements sharing the face F . Let φ be the average

of φ over K and let us denote ψ := φ−φ. Upon denoting v̂(x) = JTKv(TK(x̂)) and ψ̂(x̂) = JTKψ(TK(x̂)), it is
a standard result (see Monk [29, 3.82]) that∫

F

(v×n)·ψ =

∫
F̂

(v̂×n̂)·ψ̂,
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where n̂ is one of the two unit normals on F̂ . Let us extend v̂ by zero on ∂K̂\F̂ ; then v̂ ∈: H
1
2−σ(∂K̂) for all

σ > 0. Note that it is not possible to have σ = 0. Now let R : H
1
2−σ(∂K̂) −→ H1−σ(K̂) be a standard lifting

operator. There is a constant depending only on K̂ and σ so that

‖Rv̂‖L2(K̂) + ‖∇̂×Rv̂‖H−σ(K̂) ≤ c(K̂, σ)‖Rv̂‖H1−σ(K̂) ≤ c
′c(K̂, σ)‖v̂‖

H
1
2
−σ(F̂ )

,

where ∇̂× is the curl operator in the coordinate system of K̂. Then, slightly abusing the notation by using
integrals instead of duality products, we have∣∣∣∣∫

F̂

(v̂×n̂)·ψ̂
∣∣∣∣ =

∣∣∣∣∫
K̂

(
(Rv̂)·∇̂×ψ̂ − ψ̂·∇̂×(Rv̂)

)∣∣∣∣
≤ c

(
‖(Rv̂)‖L2(K̂)‖∇̂×ψ̂‖L2(K̂) + ‖ψ̂‖Hσ

0 (K̂)‖∇̂×(Rv̂)‖H−σ(K̂)

)
≤ c

(
‖∇̂×ψ̂‖L2(K̂) + ‖ψ̂‖Hσ

0 (K̂)

)
‖v̂‖

H
1
2
−σ(F̂ )

≤ c
(
‖∇̂×ψ̂‖L2(K̂) + ‖ψ̂‖Hσ(K̂)

)
‖v̂‖

H
1
2
−σ(F̂ )

,

where we used that Hσ(K̂) = Hσ
0 (K̂) for σ ∈ [0, 1

2 ). Due to norm equivalence for discrete functions over K̂

and using that ‖JK‖ ≤ chK , hK/hF ≤ c and |F | ≤ ch2
F in three space dimensions, where c depends of the

shape-regularity constant of the mesh family and the polynomial degree k, we have

‖v̂‖
H

1
2
−σ(F̂ )

≤ c‖v̂‖L2(F̂ ) ≤ c‖JK‖|F |
− 1

2 ‖v‖L2(F ) ≤ chKh−1
F ‖v‖L2(F ) ≤ c′‖v‖L2(F ).

Using the identity (see Monk [29, Cor. 3.58])

(∇×ψ)(TK(x̂)) =
1

det(JK)
JK(∇̂×ψ̂)(x̂),

we obtain

‖∇̂×ψ̂‖L2(K) ≤ c|det(JK)| 12 ‖J−1
K ‖‖∇×ψ‖L2(K) ≤ ch

1
2

K ‖∇×ψ‖L2(K).

Since the average of ψ over K is zero, we can use Lemma A.1 (with an extra scaling by ‖JK‖ for ψ̂ = JTKψ(TK))
to deduce

‖ψ̂‖Hσ(K̂) ≤ ch
σ− 1

2

K ‖ψ‖Hσ(K).

In conclusion we have obtained the following estimate:∫
F

(v×n)·(φ− φ) ≤ c
(
hK ‖∇×φ‖L2(K) + hσK‖φ− φ‖Hσ(K)

)
h
− 1

2

K ‖v‖L2(F ).

Observing that ‖1‖Hσ(K) ≤ ‖1‖1−σL2(K)‖1‖
σ
H1(K) = ‖1‖L2(K) = |K| 12 , we infer that

‖φ− φ‖Hσ(K) ≤ ‖φ‖Hσ(K) + |φ||K| 12

The Cauchy-Schwarz inequality yields |φ| ≤ |K|− 1
2 ‖φ‖L2(K); as a result,

‖φ− φ‖Hσ(K) ≤ ‖φ‖Hσ(K) + ‖φ‖L2(K) ≤ 2‖φ‖Hσ(K).
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Now we evaluate a bound from above on
∫
F

(v×n)·φ as follows:∣∣∣∣∫
F

(v×n)·φ
∣∣∣∣ ≤ |φ||F | 12 ‖v‖L2(F ) ≤ |K|−

1
2 ‖φ‖L2(K)|F |

1
2 ‖v‖L2(F )

≤ c‖v‖L2(F )h
− 1

2

F ‖φ‖L2(K).

The result follows by combining all the above estimates. �

Lemma A.4. Let α ∈ ( 1
2 , 1). There is exists a constant c(α) so that

‖u‖L2(Γ) ≤ c(α)‖u‖1−
1

2α

L2(Ω)‖u‖
1

2α

Hα(Ω), ∀u ∈ Hα(Ω). (A.4)

Similarly, for s ∈
(
0, 1

2

)
, there exists a constant c(s) so that, for Θ := 1−2s

2(1−s) ,

‖u‖L2(Γ) ≤ c(s)‖u‖1−Θ
Hs(Ω)‖u‖

Θ
H1(Ω), ∀u ∈ H1(Ω). (A.5)

Proof. We start with the standard estimate

‖u‖L2(Γ) ≤ c‖u‖
1
2

L2(Ω)‖u‖
1
2

H1(Ω), ∀u ∈ H1(Ω),

which allows us to apply Lemma A.5. This implies that the trace operator is a continuous linear mapping from
[L2(Ω),H1(Ω)] 1

2 ,1
to L2(Γ). Then the re-iteration lemma implies that

[L2(Ω),Hα(Ω)] 1
2α ,1

= [L2(Ω), [L2(Ω),H1(Ω)]α,2] 1
2α ,1

= [L2(Ω),H1(Ω)] 1
2 ,1

[Hs(Ω),H1(Ω)]Θ,1 = [[L2(Ω),H1(Ω)]s,2,H
1(Ω)]Θ,1 = [L2(Ω),H1(Ω)] 1

2 ,1

The norms being equivalent, we can eventually write:

‖u‖L2(Γ) ≤ c‖u‖[L2(Ω),H1(Ω)] 1
2
,1
≤ c(α)‖u‖[L2(Ω),Hα(Ω)] 1

2α
,1
≤ c(α)‖u‖1−

1
2α

L2(Ω)‖u‖
1

2α

Hα(Ω),

‖u‖L2(Γ) ≤ c‖u‖[L2(Ω),H1(Ω)] 1
2
,1
≤ c(s)‖u‖[Hs(Ω),H1(Ω)]Θ,1 ≤ c(s)‖u‖

1−Θ
Hs(Ω)‖u‖

Θ
H1(Ω).

This concludes the proof. �

Lemma A.5 (Lions-Petree). Let E1 ⊂ E0 be two Banach spaces, with continuous embedding. Let L be a linear
mapping E1 → F with F another Banach space. For s ∈ (0, 1), L extends to a linear mapping from [E0, E1]s,1
to F if and only if there exists C > 0 such that

∀u ∈ E1, ‖Lu‖F ≤ C‖u‖1−sE0
‖u‖sE1

.

Proof. See Lemma 25.3 in Tartar [33]. �
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