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Abstract. This note establishes regularity estimates for the solution of the

Maxwell equations in Lipschitz domains with non-smooth coefficients and min-
imal regularity assumptions. The argumentation relies on elliptic regularity

estimates for the Poisson problem with non-smooth coefficients.

1. Introduction

The purpose of this note is to prove regularity estimates for the solution of the
Maxwell equations in Lipschitz domains with non-smooth coefficients and mini-
mal regularity assumptions. More precisely, given a Lipschitz domain Ω, we are
interested in the time harmonic Maxwell system,

(1.1) ∇×E− iω�H = 0 and ∇×H + iω�E = J,

where E is the electric field, H is the magnetic field, J is a given (divergence-free)
current density, � is the tensor-valued electrical permittivity of the material, and � is
the tensor-valued magnetic permeability. The tensor fields x 7→ �(x) and x 7→ �(x)
are assumed to be piecewise smooth and uniformly positive definite. The Maxwell
system (1.1) must be supplemented with boundary conditions. In this work, we
assume that E satisfies the perfect conduct boundary condition , i.e.,

(1.2) E×n|Γ = 0,

where n is the outer unit normal of Ω and Γ is the boundary of Ω. Eliminating the
magnetic field from (1.1), the electric field satisfies the following system:

(1.3) ∇×
(
�−1∇×E

)
− ω2�E = iωJ, ∇·(�E) = 0, E×n|Γ = 0.

If the electric field is eliminated instead, we obtain

(1.4) ∇×
(
�−1∇×H

)
− ω2�H = ∇×

(
�−1J

)
, ∇·(�H) = 0, (�H)·n|Γ = 0,

where the boundary condition (�H)·n|Γ = 0 is a consequence of (1.2).
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Establishing regularity estimates for (1.3) and (1.4) requires studying the follow-
ing model problem

(1.5) ∇×
(
�−1∇×F

)
= g, ∇·(�F) = 0, F×n|Γ = 0.

In the above formulation, g is assumed to belong to L2(Ω) with ∇·g = 0. However,
for numerical considerations, see Bonito and Guermond [1] and Bonito et al. [2], it
is advantageous to consider the following mixed formulation of the above problem:

(1.6) ∇×
(
�−1∇×F

)
+ �∇p = g, ∇·(�F) = 0, F×n|Γ = 0, p|Γ = 0,

where this time it is not necessary to require that g be solenoidal. The additional
scalar field p accommodates the possible non-zero divergence of g. Of course p = 0
if g is divergence free.

The main result (Theorem 5.1) established in this paper is that, under very mild
assumptions on the fields � and �, there is τ(�,�) (possibly les than 1

2 for Lipschitz

boundaries) so that the mapping g 7−→ (F,∇×F) is continuous from L2(Ω) to
Hs(Ω)×Hs(Ω) for all 0 ≤ s < τ(�,�). Theorem 5.1 relies on the following two em-
bedding estimates established in Proposition 4.1 and Proposition 4.2, respectively:
There are constants c(s, �), c(s,�) so that

(1.7) ‖F‖Hs(Ω) ≤ c(s, �)
(
‖∇×F‖L2(Ω) + ‖∇·(�F)‖Hs−1(Ω)

)
, ∀s ∈ [0, τ(�))

holds for all smooth vector fields F with zero tangent trace, and

(1.8) ‖G‖Hs(Ω) ≤ c(s,�)‖∇×G‖L2(Ω), ∀s ∈ [0, τ(�))

holds for all smooth vector fields G such that ∇·(�G) = 0 and (�G·)n|Γ = 0. The
estimate (1.7) is of particular interest when approximating the Maxwell equations
with Lagrange finite elements and when using a stabilization technique that requires
controlling the divergence of the electric field in Hs−1(Ω) with s ∈ (0, 1

2 ), see e.g.
Bonito and Guermond [1]. The estimates (1.7)-(1.8) are also useful to establish
compactness on the electric field and its curl. More precisely, assuming that F solves
(1.5) and upon setting G = �−1∇×F, we observe that (�G·)n|Γ = 0, ∇·(�G) =
0, and (1.8) implies that G is a member of Hs(Ω), which in turn, under mild
assumptions on the multiplier �, implies that ∇×F is in Hs(Ω). Estimates similar
to (1.7)-(1.8) have been obtained by Jochmann [12] using different norms to control
F in (1.7). More precisely, the right hand side of (1.7) is replaced therein by a norm
in an interpolation space between H0,curl(Ω) and L2(Ω). Although this alternative
estimate entails less regularity on ∇×F, it seems to us that the interpolation norm
may not have a characterization as clear as that in (1.7).

To the best of our knowledge, the results stated in Theorem 4.1, Proposition 4.1,
Proposition 4.2, and Theorem 5.1 are new in the range s ∈ (0, 1

2 ). In partic-
ular Theorem 4.1, Proposition 4.1, and Proposition 4.2 generalize the now well-
known fact, established in particular in Costabel [3], that H0,curl(Ω)∩Hdiv(Ω) and

Hcurl(Ω) ∩H0,div(Ω) are continuously embedded in H
1
2 (Ω). The proofs of Propo-

sition 4.1 and Proposition 4.2 use regularity estimates on the Laplace equation
with non-smooth coefficients supplemented with either Dirichlet or Neumann data.
These regularity estimates are stated in Theorem 3.1. The estimates in Theorem 3.1
are not new, and may be found scattered in the literature in various guises. We
nevertheless have included the proof of this theorem in the paper to make it self-
contained. For instance, Savaré [16] has proved similar results for Dirichlet data by
assuming some global integrability of the right-hand side of the Laplace equation
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and assuming that the multiplier is piecewise constant over two sub-domains. Later,
Jochmann [11] removed the extra integrability assumption, considered finitely many
sub-domains and mixed Dirichlet-Neumann boundary conditions. His proof tech-
nique is based on local maps and requires some mild regularity on the boundary of
the domain (each map is Lipschitz and its Jacobian is piecewise C0, 12 ) when dealing
with mixed boundary condition. Following the arguments proposed by Meyers [15]
and Jochmann [11], we provide in Theorem 3.1 a regularity result for both types
of boundary conditions assuming only Lipschitz regularity on the boundary of the
domain and piecewise smoothness on the multiplier. The proof uses the regularity
results of Jerison and Kenig [10] on Lipschitz domains for the Laplace equation.

The paper is organized as follows. We introduce some notation and prove pre-
liminary results on multipliers in §2. Regularity properties of the Laplace equation
with non-smooth coefficients are discussed in §3 and collected in Theorem 3.1. We
establish embedding results in §4; these results are stated in Proposition 4.1 and
Proposition 4.2 and are used to prove regularity estimates on the Maxwell system.
Finally §5 focuses on the Maxwell system with non-smooth coefficients, e.g. electri-
cal conductivity, magnetic permeability, or electrical permittivity. The main result
of this section is Theorem 5.1. The main thrust for the present work is our ongo-
ing research program to establish convergence estimates for the approximation of
the Maxwell system using H1-conforming Lagrange finite elements in the spirit of
Bonito and Guermond [1], Bonito et al. [2].

2. Preliminaries

The objective of this section is to introduce notation and recall key results re-
garding multipliers. Although some of these results are somewhat standard, we
provide proofs for the sake of completeness.

2.1. Notation. Henceforth Ω is a bounded, simply-connected Lipschitz domain
in Rd, d = 2, 3, that we assume to be partitioned into M connected Lipschitz
subdomains Ω1, · · · ,ΩM . The boundary of the domain is assumed to be connected
and is denoted Γ, i.e., Γ := ∂Ω, the interface between the subdomains Ω1, · · · ,ΩM
is denoted Σ, i.e.,

(2.1) Σ :=
⋃
i 6=j

Γi ∩ Γj .

Let E ⊂ Ω be a non-empty connected open Lipschitz subset of Ω. We denote
(·, ·)E the inner product in L2(E) for scalar-valued fields, in L2(E) for vector-
valued field, and in L2(E) for d×d tensor-valued fields. The subscript is omitted if
the domain of integration is Ω. The subspaces of L2(E) and H1(E) composed of

the functions with zero average over E are denoted L̇2(E) and Ḣ1(E) respectively.
Owing to the Poincaré and Poincaré-Friedrichs inequalities, we equip H1

0 (E) and

Ḣ1(E) with the following norms:

(2.2) ‖u‖H1
0 (E) := ‖∇u‖L2(E), ‖u‖Ḣ1(E) := ‖∇u‖L2(E).

The norm of
(
H1

0 (E)
)′

is then defined by

(2.3) ‖F‖(H1
0 (E))′ := sup

06=u∈H1
0 (E)

〈F, u〉(H1
0 (E)′,H1

0 (E)

‖∇u‖L2(E)
,
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and the norm of
(
H1(E)

)′
is defined similarly.

We define the Sobolev spaces Hs(E), Ḣs(E) for 0 < s < 1, by using the real

interpolation method (K-method) between L2(E) and H1(E) and between L̇2(E)

and Ḣ1(E), respectively; see for instance Lions and Peetre [14] or Tartar [17, Chap-
ter 22]. We also define Hs

0(E) by interpolation between L2(E) and H1
0 (E), so that

for any 0 ≤ s < 1
2 , the spaces Hs

0(E) and Hs(E) coincide (cf. Lions and Magenes
[13, Thm 11.1] or Grisvard [8, Cor. 1.4.4.5]). For the sake of conciseness, we denote

(2.4) Hs(E) :=

{
Hs

0(E) for Dirichlet boundary conditions,

Ḣs(E) for Neumann boundary conditions,

for s ∈ [0, 1], and Hs(E) := (H−s(E))′ for s ∈ [−1, 0]. Note that when we use

H1(E) = Ḣ1(E), the elements of the dual space Hs(E), s ∈ [−1, 0), cannot be
identified with distributions in (D(E))′ in general. For instance, for any g ∈ L2(∂E)
and s ∈ [−1,− 1

2 ), the linear form H−s(E) 3 p 7→
∫
∂E

gp is in Hs(E) but it cannot
be represented by a distribution in (D(E))′. The above definitions naturally extend
to vector fields and tensor fields, and in these cases we use bold and blackboard
symbols to avoid confusion. For any s ∈ [0, 1], we abusively denote H1+s(E) the
following spaces:

H1+s(E) =

{
{p ∈ H1

0 (E), ∇p ∈ Hs(E)} if H1(E) = H1
0 (E)

{p ∈ Ḣ1(E), ∇p ∈ Hs(E)} if H1(E) = Ḣ1(E),
(2.5)

and we equip H1+s(E) with the following norm:

(2.6) ‖p‖H1+s(E) := ‖∇p‖Hs(E).

The Poincaré constant over each sudomain Ωi is denoted CΩi , i.e.,

(2.7) ∀u ∈ H1
0(Ωi), ‖u‖L2(Ωi) ≤ CΩi

‖∇u‖L2(Ωi),

and we set

(2.8) CΩ := max
1≤i≤M

CΩi
.

The norm of the natural injection from Hs(Ωi) to Hs
0(Ωi) is denoted Ds,Ωi

for all
s ∈ [0, 1

2 ) and all i = 1, . . . ,M , i.e.,

(2.9) ‖v‖Hs
0(Ωi) ≤ Ds,Ωi

‖v‖Hs(Ωi), ∀v ∈ Hs(Ωi).

In addition, we set

(2.10) Ds,Ω := max( max
1≤i≤M

Ds,Ωi
, 1).

Assuming that X and Y are two Banach spaces, L(X,Y ) denotes the space of
bounded linear operators X → Y equipped with their natural norm, ‖ · ‖X→Y . In
the rest of the paper we use the generic notation c for constants. The value of c
may change at each occurrence.
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2.2. Multipliers. We now introduce notation to stipulate the regularity that we
require on the tensor fields � and �. In the rest of the paper we assume that all the
tensors are symmetric. We then define

(2.11) W
1,∞
Σ (Ω) :=

{
� ∈ L∞(Ω) | ∇(�|Ωi

) ∈ L∞(Ωi)
d, i = 1, · · · ,M

}
,

where the norm of tensors is defined to be the norm induced by the Euclidean norm.
For all � in W

1,∞
Σ (Ω) we define �max ∈ R such that

(2.12) �max = ‖λmax(�)‖L∞(Ω),

where λmax(�) is the largest eigenvalue of �. We also define Λ� ∈ R by

Λ� :=
maxi=1,··· ,M ‖∇(�|Ωi

)‖L∞(Ωi)d

�max
, if �max 6= 0, Λ� := 0 otherwise.

Given a tensor field � in W
1,∞
Σ (Ω), we call multiplier E� associated with � the

linear operator E� : L2(Ω)→ L2(Ω) so that

(2.13) (E�(u))(x) := �(x)u(x) for a.e. x in Ω, ∀u ∈ L2(Ω).

The key result of this section is the following

Proposition 2.1. Let � ∈ W
1,∞
Σ (Ω). Then E� ∈ L(Hs(Ω),Hs(Ω)) for every s ∈[

0, 1
2

)
and

(2.14) ‖E�‖Hs(Ω)→Hs
0(Ω) ≤ �maxNs,�, where Ns,� := Ds,Ω(2(1 + C2

ΩΛ2
�))

s
2 .

Moreover, the following holds for all r ∈ [0, 1
2 ),

(2.15) ‖E�‖Hs(Ω)→Hs
0(Ω) ≤ �maxN

s
r
r,�, ∀s ∈ [0, r].

Proof. Let 0 ≤ s < 1
2 and consider u ∈ Hs(Ω). We set ui := u|Ωi

for i = 1, · · ·M .
Then owing to Lemma 2.1 below, ui ∈ Hs(Ωi) for all i = 1, . . . ,M . This in
turn implies that ui ∈ Hs

0(Ωi) since 0 ≤ s < 1
2 . We now proceed by using the

K-interpolation theory. For any ui ∈ [L2(Ωi),H
1
0(Ωi)]s = Hs

0(Ω), we set

K(t,ui,L
2(Ωi),H

1
0(Ωi)) := inf

v∈H1
0(Ωi)

{
‖ui − v‖2L2(Ωi)

+ t2‖v‖2H1
0(Ωi)

}
.

Then asserting that ui is in Hs
0(Ωi) is equivalent to saying that the mapping R+ 3

t 7→ K(t,ui,L
2(Ωi),H

1
0(Ωi)) is in L1

(
R+, dt

t1+2s

)
. For any t > 0, we define ui,t ∈

H1
0(Ωi) so that (ui,t,vi)Ωi

+ t2 (∇ui,t,∇vi)Ωi
= (ui,vi)Ωi

, for all vi ∈ H1
0(Ωi).

This definition implies that

‖ui − ui,t‖2L2(Ωi)
+ t2‖ui,t‖2H1

0(Ωi)
= K(t,ui,L

2(Ωi),H
1
0(Ωi)).

Now we estimate K(t, E�u,L2(Ω),H1
0(Ω)). For this purpose we define ut by

ut|Ωi
= ui,t. Since every ui,t vanishes on Σ, we have ut ∈ H1

0(Ω), E�ut ∈ H1
0(Ω)
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with the following two estimates:

‖E�(u− ut)‖2L2(Ω) =

M∑
i=1

‖�(ui − ui,t)‖2L2(Ωi)
≤ �2

max

M∑
i=1

‖ui − ui,t‖2L2(Ωi)
,

‖E�ut‖2H1
0(Ω) := ‖∇ (E�ut) ‖2L2(Ω) ≤ 2

M∑
i=1

‖�∇ui,t‖2L2(Ωi)
+ ‖(∇�)ui,t‖2L2(Ωi)

≤ 2�2
max

(
1 + C2

ΩΛ2
�

) M∑
i=1

‖∇ui,t‖2L2(Ωi)

where we used the Poincaré inequality on every Ωi in the second estimate. Com-
bining the above two inequalities and setting α2 := 2

(
1 + C2

ΩΛ2
�

)
gives

K(t, E�u,L2(Ω),H1
0(Ω)) ≤ ‖E�(u− uαt)‖2L2(Ω) + t2‖E�uαt‖2H1

0(Ω)

≤ �2
max

M∑
i=1

(
‖ui − ui,αt‖2L2(Ωi)

+ α2t2‖∇ui,αt‖2L2(Ωi)

)
≤ �2

max

M∑
i=1

K(αt,ui,L
2(Ωi),H

1
0(Ωi)).

As a result E�u ∈ Hs
0(Ω), and using ‖ui‖Hs

0(Ωi) ≤ Ds,Ωi
‖ui‖Hs(Ωi) we deduce that

�−2
max‖E�u‖2Hs

0(Ω) ≤
M∑
i=1

∫ ∞
0

K(αt,ui,L
2(Ωi),H

1
0(Ωi))t

−1−2sdt ≤ α2s
M∑
i=1

‖ui‖2Hs
0(Ωi)

≤ α2s
M∑
i=1

D2
s,Ωi
‖ui‖2Hs(Ωi)

≤ N2
s,�

M∑
i=1

‖ui‖2Hs(Ωi)
.

Then we finally obtain (2.14) by using Lemma 2.1. The inequality (2.15) directly
follows from the re-interpolation formula Hs(Ω) =

[
L2(Ω),Hr(Ω)

]
s
r

, upon noticing

that N0,� = 1, This completes the proof. �

Lemma 2.1. The following holds for all s ∈ [0, 1] and for all v ∈ Hs(Ω),

(2.16)

M∑
i=1

‖v|Ωi
‖2Hs(Ωi)

≤ ‖v‖2Hs(Ω).

Proof. The result is evident for s = 0 and s = 1. Let us now consider s ∈ (0, 1),
and let v be a member of Hs(Ω). Recall that

‖v‖Hs(Ω) :=

(∫ ∞
0

K(t,v,L2(Ω),H1(Ω))2t−1−2sdt

) 1
2

,

K(t,v,L2(Ω),H1(Ω))2 := inf
w∈H1(Ω)

(
‖v −w‖2L2(Ω) + t2‖w‖2H1(Ω)

)
.

For all t ∈ R+, let us denote vt the function in H1(Ω) that achieves the infimum
in the definition of K(t,v,L2(Ω),H1(Ω)), i.e., −t2∆vt + t2vt + (vt−v) = 0 over Ω
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with homogeneous Neumann boundary condition. Then

M∑
i=1

‖v|Ωi
‖2Hs(Ωi)

=

M∑
i=1

∫ ∞
0

K(t,v|Ωi
,L2(Ωi),H

1(Ωi))
2t−1−2sdt

≤
M∑
i=1

∫ ∞
0

(
‖v|Ωi

− vt|Ωi
‖2L2(Ωi)

+ t2‖vt|Ωi
‖2H1(Ωi)

)
t−1−2sdt

=

∫ ∞
0

(
M∑
i=1

‖v|Ωi
− vt|Ωi

‖2L2(Ωi)
+ t2‖vt|Ωi

‖2H1(Ωi)

)
t−1−2sdt

=

∫ ∞
0

K(t,v,L2(Ω),H1(Ω))2t−1−2sdt := ‖v‖2Hs(Ω).

This completes the proof. �

3. Non-constant coefficient Laplace equation

We establish regularity estimates for the Laplace equation with non-constant
coefficients in this section.

3.1. The main result. Let � be a tensor field in W
1,∞
Σ (Ω) and assume that

(3.1) ∃�min > 0 such that ξT �ξ ≥ �minξ
T ξ a.e. in Ω, ∀ξ ∈ Rd.

Consider the following problem: given f ∈ H−1(Ω), find p ∈ H1(Ω) such that,

(3.2) ∀q ∈ H1(Ω), (�∇p,∇q) = 〈f, q〉H−1(Ω),H1(Ω) .

The existence and uniqueness of a solution to the above problem is ensured by the
Lax-Milgram lemma since

∀p ∈ H1(Ω), �min‖p‖2H1(Ω) = �min (∇p,∇p) ≤ (�∇p,∇p) .

We re-write the above problem (3.2) in the symbolic form −∆H
1

� p = f .
The objective of this section is to prove the following theorem which is a variant

of a result from Jochmann [11].

Theorem 3.1. Let � ∈ W
1,∞
Σ (Ω) be satisfying (3.1). There exists τ ∈ (0, 1

2 ), only

depending on �, Ω, and the partition {Ωi}Mi=1 such that, for every s ∈ [0, τ) and
every f ∈ Hs−1(Ω), the solution p ∈ H1(Ω) of the problem (3.2) is in H1+s(Ω) and
satisfies the estimate

(3.3) ‖p‖Hs+1(Ω) ≤ c‖f‖Hs−1(Ω),

where c depends only on Ω, �, the partition {Ωi}Mi=1, and s.

Remark 3.1 (Extensions to general multipliers). Theorem 3.1 holds in the general
case when � is a multiplier of Hs(Ω) satisfying (3.1), i.e., E� ∈ L(Hs(Ω),Hs(Ω)).
The proof proposed in §3.3 extends readily for any multiplier such that E� ∈
L(Hs(Ω),Hs(Ω)).

We postpone the proof of Theorem 3.1 to §3.3. We will use a technique similar to
that in Jochmann [11], where the author proves the result for a more general class
of spaces, but requires some additional regularity conditions on the boundary Γ
and assumes (2.14). Since it was not seem clear to us whether or not the additional
regularity condition stated in Jochmann [11] was needed for the pure Dirichlet and
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pure Neumann problems, we re-prove the result here and show that the Lipschitz
condition is sufficient. We also derive an almost explicit admissible range for τ ;
however, our predicted admissible range may not be robust with respect to the
contrast of �.

3.2. Key lemmas. Using the same notation as in Jochmann [11], we introduce
the operators J ∈ L(H−1(Ω),H1(Ω)) and S ∈ L(L2,H−1(Ω)) defined as follows:

(3.4) ∀f ∈ H−1(Ω), ∀q ∈ H1(Ω), (∇(J f),∇q) = 〈f, q〉H−1(Ω),H1(Ω) .

and

(3.5) ∀F ∈ L2, ∀q ∈ H1(Ω), 〈SF, q〉H−1(Ω),H1(Ω) := (F,∇q) .

Note that J is well defined owing to the definition of H1(Ω) and the Lax-Milgram
lemma.

Lemma 3.1. For all s ∈ [0, 1] and for all F ∈ Hs
0(Ω), we have

(3.6) SF ∈ Hs−1(Ω) and ‖SF‖Hs−1(Ω) ≤ ‖F‖Hs
0(Ω).

Proof. This is again a standard interpolation argument. We start with s = 0 and
F ∈ L2(Ω). Then the following series of bounds holds for all p ∈ H1(Ω):

〈SF, p〉H−1(Ω),H1(Ω) = (F,∇p) ≤ ‖F‖L2(Ω)‖∇p‖L2(Ω)=‖F‖L2(Ω)‖p‖H1(Ω),

which leads to

(3.7) ‖SF‖H−1(Ω) ≤ ‖F‖L2(Ω).

When s = 1 and F ∈ H1
0(Ω), the following estimates hold for all p ∈ H1(Ω):

〈SF, p〉H−1(Ω),H1(Ω) = (F,∇p) = − (∇·F, p) ≤ ‖∇·F‖L2(Ω)‖p‖H0(Ω).

Using the fact that

‖∇·F‖2L2(Ω) ≤ ‖∇·F‖
2
L2(Ω) + ‖∇×F‖2L2(Ω) = ‖∇F‖2L2(Ω) = ‖F‖2H1

0(Ω),

and recalling that SF = −∇·F and
∫

Ω
SF = 0, since F ∈ H1

0(Ω), we infer that
(3.8)

sup
0 6=p∈H0(Ω)

〈SF, p〉H−1(Ω),H1(Ω)

‖p‖H0(Ω)
= ‖SF‖H0 = ‖SF‖L̇2(Ω) = ‖SF‖L2(Ω) ≤ ‖F‖H1

0(Ω).

We conclude by the using the Riesz-Thorin Theorem. �

Lemma 3.2. For all r ∈ [0, 1
2 ), there is K := K(Ω, r) such that the following holds

for all f ∈ Hr−1(Ω),

(3.9) J f ∈ H1+r(Ω) and ‖J f‖H1+r(Ω) ≤ K‖f‖Hr−1(Ω).

and for all s ∈ [0, r] and all f ∈ Hs−1(Ω),

(3.10) J f ∈ H1+s(Ω) and ‖J f‖H1+s(Ω) ≤ K
s
r ‖f‖Hs−1(Ω).

Proof. The result is proved by using a standard interpolation technique. We first
establish the estimate for s = 0. Taking f ∈ H−1(Ω) and using the definition of J
together with the norm in H1(Ω) gives

‖J f‖2H1(Ω) = 〈f,J f〉H−1(Ω),H1(Ω) ≤ ‖f‖H−1(Ω)‖J f‖H1(Ω),

thereby leading to
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(3.11) ∀f ∈ H−1(Ω), ‖J f‖H1(Ω) ≤ ‖f‖H−1(Ω).

We must distinguish two cases for r < 1
2 depending whether H1(Ω) = H1

0 (Ω)

or H1(Ω) = Ḣ1(Ω). If H1(Ω) = H1
0 (Ω), then a standard result from Jerison and

Kenig [10] (cf. Theorem 0.5) implies that there exists K only depending on Ω and
r such that

‖J f‖H1+r(Ω) ≤ K‖f‖Hr−1(Ω), ∀f ∈ Hr−1(Ω) = (H1−r
0 (Ω))′.

The Neumann boundary case, H1(Ω) = Ḣ1(Ω), does not seem to be as clear as
the Dirichlet case. It appears however to be a by-product of Theorem 3 in Savaré
[16]; it is proved therein that J f ∈ H1+r(Ω) for any r ∈ [0, 1

2 ), i.e., (abusing the
notation) there exists K only depending on Ω and r such that

‖∇J f‖Hr(Ω) ≤ K‖f‖(H1−r(Ω))′ , ∀f ∈ Hr−1(Ω) = (H1−r(Ω))′.

In conclusion, for any 0 < r < 1
2 there exists K = K(r,Ω) such that (3.9) holds.

The estimate (3.10) is obtained by interpolation using (3.11) and (3.9). �

Remark 3.2. Owing to the property JS∇u = u for all u ∈ H1(Ω), we infer that
‖J ‖Hr−1→Hr+1‖S‖Hr

0→Hr−1 ≥ 1, which in turn implies the following lower bound

K(Ω, r) ≥ ‖J ‖Hr−1→Hr+1 ≥ 1.

3.3. Proof of Theorem 3.1. We want to use a perturbation argument à la Meyers
[15]. Let k > 0 be a positive number yet to be chosen. Let f ∈ H−1(Ω) and let
p ∈ H1(Ω) be the solution to (3.2). Let us start by observing that the following
holds in the distribution sense if f ∈ (H1

0 (Ω))′:

f = −∇·(�∇p) = −k∆p+∇·((kI− �)∇p) = −∆(kp) +∇·((I− 1

k
�)∇(kp)),

where I ∈ Rd×d is the identity matrix. This representation must be modified as
follows to account for boundary conditions (in particular to account for Neumann
boundary conditions, i.e., when f ∈ (H1(Ω))′):

f = S(�∇p) = kS∇p− S((kI− �)∇p) = S∇(kp)− S((I− 1

k
�)∇(kp)).

Upon setting �̄ := I− 1
k� and q = kp, and using that JS∇ is the identity operator

in H1(Ω), we arrive at

q − J (S(�̄∇q)) = J f.
Let us denote Q := JSE�̄∇ and let us assume for a moment that we can establish
that Q is a bounded operator from Hs+1(Ω) to Hs+1(Ω) and that the norm of Q
in L(Hs+1(Ω),Hs+1(Ω)) is less than 1, say ‖Q‖Hs+1→Hs+1 < 1. Then

k‖p‖Hs+1(Ω) = ‖q‖Hs+1(Ω) ≤
‖J ‖

1− ‖Q‖
‖f‖Hs−1(Ω)

and the conclusion follows readily. In summary, the crux of the matter consists of
proving that ‖Q‖Hs+1→Hs+1 < 1.

Since q is in H1+s(Ω), we infer that ∇q ∈ Hs(Ω). The hypothesis s < 1
2 together

with Proposition 2.1 implies that E�̄∇q ∈ Hs
0(Ω). Using Lemma 3.1, we infer
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that SE�̄∇q ∈ Hs−1(Ω) so that Lemma 3.2 yields Qq = JSE�̄∇q ∈ Hs+1(Ω). In
addition, we have

‖Q‖Hs+1→Hs+1 ≤ ‖J ‖Hs−1→Hs+1‖S‖Hs
0→Hs−1‖E�̄‖Hs→Hs

0

≤ K s
r �̄maxN

s
r
r,�̄

where �̄max is the L∞-norm over Ω of the largest eigenvalue of �̄, as defined in (2.12).
Then by choosing k = 1

2 (�min + �max), we have �̄max ≤ (1− 2�min/(�max + �min)),
we consequently have the following bound

‖Q‖Hs+1→Hs+1 ≤ �max − �min

�max + �min
K

s
rN

s
r
r,�̄,

which implies that ‖Q‖Hs+1→Hs+1 < 1 for all s ∈ [0, τ) where

τ := rmin

1,
log
(
�max+�min

�max−�min

)
log(KNr,�̄)

 .

Note that KNr,�̄ ≥ 1 owing to Remark 3.2 and definitions (2.10), (2.14). Observe
also that τ ∈ (0, 1

2 ). Finally we arrive at

‖p‖Hs+1(Ω) ≤
K

s
r

1− �max−�min

�max+�min
K

s
rNr,�̄

s
r
‖f‖Hs−1(Ω).

This concludes the proof of Theorem 3.1.

4. Hs embeddings

We prove in this section two embedding results that are used in §5 to establish
regularity estimates on the Maxwell problem (1.6). The main results of this section
are Propositions 4.1 and 4.2. Both these results are consequences of Theorem 4.1,
which by itself is an improvement of Theorem 2 from Costabel [3].

4.1. Notations. In the rest of the paper we use the following spaces to characterize
the regularity of vector fields:

Hcurl (Ω) :=
{
F ∈ L2(Ω) | ∇×F ∈ L2(Ω)

}
,(4.1)

Hdiv(Ω) :=
{
F ∈ L2(Ω) | ∇·F ∈ L2(Ω)

}
.(4.2)

Let s be a real number in the range [0, 1
2 ). We consider the following space equipped

with its canonical norm:

Z1−s(Ω) :=
{
F ∈ L2(Ω) | ∇×F ∈ H−s(Ω), ∇·F ∈ H−s(Ω)

}
.(4.3)

Let E : Hs+ 1
2 (Γ) −→ H1+s(Ω) be one right-inverse of the trace operator γ :

H1+s(Ω) 3 v −→ γ(v) := v|Γ ∈ Hs+ 1
2 (Γ), s ∈ [0, 1

2 ). The existence of right-
inverses is guaranteed by the continuity and surjectivity of the trace operator γ, see
e.g. Jerison and Kenig [10, Thm 3.1]. The tangential trace of a function v ∈ H−s(Ω)

with ∇×v ∈ H−s(Ω) is defined as an element of H−s−
1
2 (Γ), s ∈ [0, 1

2 ), by

(4.4) 〈v×n,ψ〉
H−s− 1

2 (Γ),Hs+1
2 (Γ)

:= 〈∇×v, E(ψ)〉H−s(Ω),Hs(Ω)

− 〈v,∇×E(ψ)〉H−s(Ω),Hs(Ω), ∀ψ ∈ Hs+ 1
2 (Γ)

for all ψ ∈ Hs+ 1
2 (Γ). Note that the above definition is consistent with the usual

tangential traces when v ∈ Hcurl (Ω), and it is independent of the extension that
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is chosen owing to the density of C∞0 (Ω) in H1+s
0 (Ω). In addition, the following

estimate holds

(4.5) ‖v×n‖
H−s− 1

2 (Γ)
≤ c

(
‖v‖H−s(Ω) + ‖∇×v‖H−s(Ω)

)
.

Similarly, for v ∈ H−s(Ω) with ∇·v ∈ H−s(Ω), we define v·n ∈ H−s− 1
2 (Γ) by

(4.6) 〈v·n, ψ〉
H−s− 1

2 (Γ),Hs+1
2 (Γ)

:= 〈∇·v, E(ψ)〉H−s(Ω),Hs(Ω)

+ 〈v,∇E(ψ)〉H−s(Ω),Hs(Ω), ∀ψ ∈ Hs+ 1
2 (Γ).

Moreover, the normal trace v·n satisfies

(4.7) ‖v·n‖
H−s− 1

2 (Γ)
≤ c

(
‖v‖H−s(Ω) + ‖∇·v‖H−s(Ω)

)
.

The above arguments show that it is legitimate to consider the following sub-
spaces of Z1−s(Ω):

Z1−s
T (Ω) :=

{
v ∈ Z1−s(Ω) | v·n|Γ = 0

}
,(4.8)

Z1−s
N (Ω) :=

{
v ∈ Z1−s(Ω) | v×n|Γ = 0

}
.(4.9)

4.2. Case of constant coefficients. The exponent 1 − s in the definitions of
Z1−s(Ω), Z1−s

N (Ω), Z1−s
T (Ω) is meant to reflect the fact Z1−s

N (Ω), Z1−s
T (Ω) embed

in H1−s(Ω) when the boundary of Ω is smooth with s = 0 and s = 1. Theorem 2 in

Costabel [3] asserts that Z1
T (Ω) and Z1

N (Ω) are continuously embedded in H
1
2 (Ω)

when the boundary is Lipschitz. The objective of this section is to extend this

result by showing that the embedding in H
1
2 (Ω) holds for Z

1
2 +

T (Ω) and Z
1
2 +

N (Ω),
where 1

2+ is any number in [0, 1
2 ).

Theorem 4.1. For all s ∈ [0, 1
2 ), there is c > 0 so that the following embedding

estimates hold:

‖u‖
H

1
2 (Ω)

≤ c
(
‖∇×u‖H−s(Ω) + ‖∇·u‖H−s(Ω) + ‖u×n‖L2(Γ)

)
,(4.10)

‖u‖
H

1
2 (Ω)

≤ c
(
‖∇×u‖H−s(Ω) + ‖∇·u‖H−s(Ω) + ‖u·n‖L2(Γ)

)
.(4.11)

Moreover, for all u ∈ Z1−s(Ω), the following conditions are equivalent:

(i) u×n ∈ L2(Γ),
(ii) u·n ∈ L2(Γ).

In order to prove Theorem 4.1, we introduce B, an open ball containing Ω̄, and
we set Γ0 = ∂B and O := B\Ω̄. Then we establish the following lemma:

Lemma 4.1. For any s ∈ [0, 1
2 ) and for any g ∈ H−s−

1
2 (Γ), there exists χ ∈

Ḣ1−s(O) such that

〈∇χ,∇ψ〉H−s(O),Hs(O) = 〈g, ψ〉
H−s− 1

2 (Γ),Hs+1
2 (Γ)

, ∀ψ ∈ Ḣ1+s(O)(4.12)

‖χ‖Ḣ1−s(O) ≤ c‖g‖H−s− 1
2 (Γ)

,(4.13)

where c is a constant that only depends on s and Γ. If in addition, 〈g, 1〉
H−s− 1

2 (Γ),Hs+1
2 (Γ)

=

0, then (4.12) holds for any ψ ∈ H1+s(O).
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Proof. Owing to the closed range Theorem, proving (4.12) is equivalent to proving
the following inf-sup condition:

inf
06=ψ∈Ḣ1+s(O)

sup
06=φ∈Ḣ1−s(O)

〈∇φ,∇ψ〉H−s(O),Hs(O)

‖φ‖Ḣ1−s(O)‖ψ‖Ḣ1+s(O)

≥ α,

for some α > 0. Using the notation of §3 with Hs(O) = Ḣs(O), and defining the

operator S : L2(O)→ (Ḣ1(O))′ by

∀f ∈ L2(O), ∀q ∈ Ḣ1(O), 〈Sf , q〉(Ḣ1(O))′,Ḣ1(O) = (f ,∇q)O ,

we infer that

〈∇φ,∇ψ〉H−s(O),Hs(O) = 〈S∇ψ, φ〉Hs−1(O),H1−s(O) ,

for all φ ∈ Ḣ1−s(O) and all ψ ∈ Ḣ1+s(O). As a result, the following holds for all

ψ ∈ Ḣs+1(O):

(4.14) sup
06=φ∈Ḣ1−s

〈∇φ,∇ψ〉H−s(O),Hs(O)

‖φ‖Ḣ1−s(O)

= ‖S∇ψ‖Hs−1(O),

Since O is a Lipschitz domain, we define the operator J : (Ḣ1(O))′ → Ḣ1(O) by

∀f ∈ (Ḣ1(O))′, ∀q ∈ Ḣ1(O), (∇J f,∇q)O = 〈f, q〉(Ḣ1(O))′,Ḣ1(O) ,

and we have JS∇ψ = ψ for all ψ ∈ Ḣ1(O). Then Lemma 3.2 implies that

(4.15) ‖∇ψ‖Hs(O) = ‖ψ‖H1+s(O) = ‖J S∇ψ‖H1+s(O) ≤ K(O, s)‖S∇ψ‖Hs−1(O).

Combining (4.14) and (4.15) and using the Poincaré-Friedrichs inequality in O leads
to the inf-sup condition with α−1 = K(O, r). This in turn implies the existence of
a function χ satisfying (4.12) and the estimate (4.13) with c = α−1 (see for instance
Ern and Guermond [6, Lemma A.42]). If in addition g satisfies the condition

〈g, 1〉
H−s− 1

2 (Γ),Hs+1
2 (Γ)

= 0,

the definition (4.12) holds for all ψ ∈ H1+s(O), i.e.,

(4.16) ∀ψ ∈ H1+s(O), 〈∇χ,∇ψ〉H−s(O),Hs(O) = 〈g, ψ〉
H−s− 1

2 (Γ),Hs+1
2 (Γ)

,

since the left-hand side of (4.12) only involves gradients. �

Let D be an open Lipschitz domain in Rd. We denote by ED : L1(D) −→ L1(Rd)
the zero extension operator, i.e.,

(4.17) ∀F ∈ L1(D), EDF (x) =

{
F (x) if x ∈ D,
0 elsewhere.

We use the same definition for vector-valued functions in L1(D).

Proof of Theorem 4.1. The proof is similar to that of Theorem 2 in Costabel [3].
Given u ∈ Z1−s(Ω), we build an extension of ∇×u in H−s(Rd) in order to be able
to construct w ∈ H1−s(Ω) such that u −w is curl-free. Then we use results from
Jerison and Kenig (cf. Jerison and Kenig [9]) to obtain some regularity on u−w.
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Consider u ∈ Z1−s(Ω). By definition ∇×u ∈ H−s(Ω) and ∇·∇×u = 0, so that

(∇×u)·n is well-defined as an element of H−s−
1
2 (Γ), owing to (4.6). Note also that

this normal trace satisfies

〈(∇×u)·n, 1〉
H−s− 1

2 (Γ),Hs+1
2 (Γ)

= 0.

Thus we can apply Lemma 4.1, and there exists χ ∈ H1−s(O) such that

〈∇χ,∇ψ〉H−s(O),Hs(O) = 〈−(∇×u)·n, ψ〉
H−s− 1

2 (Γ),Hs+1
2 (Γ)

, ∀ψ ∈ H1+s(O).

We now set f = EΩ∇×u + EO∇χ. Since s < 1
2 , Hs(Ω) = Hs

0(Ω) and Hs(B) =

Hs
0(B), f can also be seen as an element of H−s(Rd), i.e., the following holds:

〈f ,Ψ〉H−s(Rd),Hs(Rd) :=
〈
∇×u,Ψ|Ω

〉
H−s(Ω),Hs(Ω)

+
〈
∇χ,Ψ|O

〉
H−s(O),Hs(O)

,

for all Ψ ∈ Hs(Rd). Moreover, since the restrictions Hs(Rd)→ Hs(Ω) and Hs(Rd)→
Hs(O) are continuous with norm 1, combining (4.13) and (4.7) leads to

‖f‖H−s(Rd) ≤ ‖∇×u‖H−s(Ω) + ‖∇χ‖H−s(O)

≤ ‖∇×u‖H−s(Ω) + c‖(∇×u)·n‖
H−s− 1

2 (Γ)

≤ c‖∇×u‖H−s(Ω),

Owing to the definition of the trace (∇×u)·n and the definition of χ we infer that,
the following hold for all φ ∈ C∞0 (Rd):

〈f ,∇φ〉H−s(Rd),Hs(Rd) =
〈
∇×u,∇φ|Ω

〉
H−s(Ω),Hs(Ω)

+
〈
∇χ,∇φ|O

〉
H−s(O),Hs(O)

,

=
〈
∇×u,∇φ|Ω

〉
H−s(Ω),Hs(Ω)

− 〈(∇×u)·n, φ〉
H−s− 1

2 (Γ),Hs+1
2 (Γ)

,

=
〈
∇×u,∇φ|Ω

〉
H−s(Ω),Hs(Ω)

−
〈
∇×u,∇φ|Ω

〉
H−s(Ω),Hs(Ω)

− 〈∇·∇×u, φ〉H−s(Ω),Hs(Ω) = 0,

implying that ∇·f = 0. As a result there exists ΦΦΦ ∈ H2−s(Rd) such that

−∆ΦΦΦ = f with ∇·ΦΦΦ = 0 and ‖ΦΦΦ‖H2−s(Rd) ≤ c‖f‖H−s(Rd).

Setting w := ∇×ΦΦΦ, we infer that

‖w‖H1−s(Rd) ≤ c‖f‖H−s(Rd), ∇×w = f , ∇·w = 0.

This in turn implies that

∇×w|Ω = ∇×u ∈ H−s(Ω), ∇·w|Ω = 0, ‖w|Ω‖H1−s(Ω) ≤ c‖f‖H−s(Rd).

We set now z := u−w|Ω. Using the fact that Ω is simply-connected together with
∇×z = 0, we infer from Girault and Raviart [7, Theorem 2.9] that there exists
v ∈ H1(Ω) such that z = ∇v. We now split v to be able to apply a regularity result
on a homogeneous Laplace equation with non homogeneous boundary conditions.
Let EΩ∇·u be the zero extension of ∇·u. Clearly EΩ∇·u ∈ H−s(B) since

〈EΩ∇·u, ψ〉H−s(B),Hs(B) :=
〈
∇·u, ψ|Ω

〉
H−s(Ω),Hs(Ω)

, ∀ψ ∈ Hs
0(B),

and

‖EΩ∇·u‖H−s(B) ≤ ‖∇·u‖H−s(Ω),
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since s < 1
2 . Let p ∈ H1

0 (B) be the solution of −∆p = −EΩ∇·u. Then elliptic reg-

ularity implies that p ∈ H2−s(B) (see for instance Jerison and Kenig [10, Theorem
0.5]) and the following estimate holds:

‖∇p‖H1−s(B) ≤ c‖EΩ∇·u‖H−s(B) ≤ c′‖∇·u‖H−s(Ω).

Finally, let us define r := v − p|Ω. By definition of w and p, ∆r = 0 in H−s(Ω),
and we arrive at the following decomposition:

u = (w +∇p)|Ω +∇r.

Let us assume that (i) holds, i.e., u×n ∈ L2(Γ). Since w|Ω ∈ H1−s(Ω), we have

w×n ∈ H
1
2−s(Γ) ⊂ L2(Γ). Similarly, p|Ω ∈ H2−s(Ω) so that ∇p×n ∈ H

1
2−s(Γ) ⊂

L2(Γ). As a result, we have ∇r×n|Γ = (u×n −w×n − ∇p×n)|Γ ∈ L2(Γ), which

together with r|Γ ∈ L2(Γ) implies r|Γ ∈ H1(Γ). Thus we have

∆r = 0 in Ω, r|Γ ∈ H1(Γ).

Consequently r ∈ H 3
2 (Ω) and the following estimate holds since Γ is connected

‖∇r‖
H

1
2 (Ω)

≤ c‖r‖H1(Γ) ≤ c′‖∇r×n‖L2(Γ).

Hence, because u = (w +∇p)|Ω +∇r with w|Ω ∈ H1−s(Ω), ∇p|Ω ∈ H1−s(Ω), and

∇r ∈ H
1
2 (Ω), we deduce that u ∈ H

1
2 (Ω). Note also that (w·n +∇p·n)|Γ ∈ L2(Γ)

and r|Γ ∈ H1(Γ), which implies that u·n|Γ = (w·n + ∇p·n + ∇r·n)|Γ ∈ L2(Γ)
thereby proving (ii). The proof of the converse implication is similar, we leave
the details to the reader; in particular, one must use the fact that the scalar field
r := v − p|Ω is such that

∆r = 0 in Ω, n·∇r ∈ L2(Γ),

which again implies r ∈ H 3
2 (Ω), (see for instance Jerison and Kenig [9] or Costabel

[3, Lemma 1]). In summary, we have proved that (i) and (ii) are equivalent, and

that both these assumptions imply u ∈ H
1
2 (Ω).

Using s < 1
2 and gathering all the previous estimates, we end up with:

‖u‖
H

1
2 (Ω)

≤ c
(
‖w‖H1−s(Ω) + ‖∇p‖H1−s(Ω) + ‖∇r‖

H
1
2 (Ω)

)
≤ c

(
‖w‖H1−s(Ω) + ‖∇p‖H1−s(Ω) + ‖u×n‖L2(Γ) + ‖w×n‖L2(Γ) + ‖∇p×n‖L2(Γ)

)
≤ c

(
‖w‖H1−s(Ω) + ‖∇p‖H1−s(Ω) + ‖u×n‖L2(Γ)

)
≤ c

(
‖f‖H−s(Rd) + ‖EΩ∇·u‖H−s(B) + ‖u×n‖L2(Γ)

)
≤ c

(
‖∇×u‖H−s(Ω) + ‖∇·u‖H−s(Ω) + ‖u×n‖L2(Γ)

)
,

which is the desired result. The inequality involving u·n is obtained similarly. �

Remark 4.1. During the review of this paper it has been brought to our attention
that an alternative proof of Theorem 4.1 can be done by invoking arguments from
Costabel and McIntosh [4]. Using an argument from Costabel and McIntosh [4]
one can show that any u ∈ Z1−s(Ω) has a decomposition u = w + ∇p, where
w ∈ H1−s(Ω), p is harmonic and p ∈ H1−s(Ω). The regularity result then reduces
to the case s = 0 since ∇p ∈ Z0(Ω).
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4.3. Case of non-constant coefficients. Throughout §4 and §5 we assume that
the tensor fields � and � satisfy the following property:

Assumption 4.1. �,� ∈ W1,∞
Σ (Ω) and there exist �min, �min > 0 such that

ξT �ξ ≥ �minξ
T ξ a.e. in Ω, ∀ξ ∈ Rd,

ξT�ξ ≥ �minξ
T ξ a.e. in Ω, ∀ξ ∈ Rd.

The analysis of the regularity of Maxwell problem (1.6) requires introducing the
following two spaces for 0 < s < 1

2 :

Ys(Ω) :=
{
F ∈ L2(Ω) | ∇×F ∈ H−s(Ω), ∇·(�F) = 0, �F·n|Γ = 0

}
,(4.18)

Xs(Ω) :=
{
F ∈ L2(Ω) | ∇×F ∈ H−s(Ω), ∇·(�F) ∈ Hs−1(Ω), F×n|Γ = 0

}
.(4.19)

We define the following semi-norms in Xs(Ω) and Ys(Ω):

(4.20) |F|2Xs(Ω) := ‖∇×F‖2H−s(Ω) + ‖∇·(�F)‖2Hs−1(Ω), |F|Ys(Ω) := ‖∇×F‖H−s(Ω).

Two embedding results for Xs and Ys(Ω) are established in this section.

Proposition 4.1. Let Assumption 4.1 hold. There exists τ� > 0, only depending on
Ω and �, such that, for any s ∈ [0, τ�), Xs(Ω) is continuously embedded in Hs(Ω),
and there is c > 0 so that

(4.21) ‖F‖Hs(Ω) ≤ c |F|Xs(Ω), ∀F ∈ Xs(Ω).

Proof. Owing to Assumption 4.1, we can apply Theorem 3.1 with � = � and
H1(Ω) = H1

0 (Ω). Let τ� <
1
2 be the parameter defined in Theorem 3.1. Let us

consider F ∈ Xs(Ω) with s ∈ [0, τ�). We define p ∈ H1
0 (Ω) such that

(∇p,∇q) = (F,∇q) , ∀q ∈ H1
0 (Ω),

and we set w := F−∇p. This definition implies that w ∈ Z1−s(Ω) since ∇×w =
∇×F and ∇·w = 0. Observing also that w×n|Γ = 0 and applying Theorem 4.1, we

deduce that w ∈ H
1
2 (Ω) and ‖w‖

H
1
2 (Ω)

≤ c‖∇×w‖H−s(Ω). In addition, s < 1
2 and

∇×w = ∇×F, imply that

(4.22) ‖w‖Hs(Ω) ≤ c‖∇×F‖H−s(Ω).

Moreover, since w ∈ Hs(Ω), Proposition 2.1 ensures that �w ∈ Hs(Ω); as a result,
∇·(�w) ∈ Hs−1(Ω) and

(4.23) ‖∇·(�w)‖Hs−1(Ω) ≤ c‖�w‖Hs(Ω) ≤ c′‖w‖Hs(Ω) ≤ c′′‖∇×F‖H−s(Ω).

Let us now turn our attention to p. In view of the following equality

(�∇p,∇q) = (�F,∇q)− (�w,∇q) , q ∈ H1
0 (Ω),

and upon introducing the linear form f : H1(Ω) 3 q 7→ (�F− �w,∇q), i.e., f =
−∇·(�(F−w)), we infer that p solves:

(�∇p,∇q) = 〈f, q〉H−1(Ω),H(Ω), ∀q ∈ H1(Ω).

The definition of Xs(Ω) implies that ∇·(�F) ∈ Hs−1(Ω). This, together with (4.23),
implies that ‖f‖Hs−1(Ω) ≤ c|F|Xs(Ω). Applying Theorem 3.1, we infer that p ∈
H1+s(Ω) and

(4.24) ‖∇p‖Hs(Ω) ≤ c|F|Xs(Ω).
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Using (4.22), (4.24), and recalling the definition F = w + ∇p, we conclude that
F ∈ Hs(Ω) and there exists a constant c that only depends on Ω, �, and s such
that

(4.25) ‖F‖Hs(Ω) ≤ c |F|Xs(Ω) .

This concludes the proof. �

Proposition 4.2. Let Assumption 4.1 hold. There exists τ� only depending on
Ω and � such that, for any s ∈ [0, τ�) and any t ∈

[
0, 1

2

)
, the space Yt(Ω) is

continuously embedded in Hs(Ω).

Proof. We proceed as in the proof of Proposition 4.1. We consider F ∈ Yt(Ω) and
we want to decompose F as follows:

F = w +∇p,

where w is a regular part and p is the solution of an elliptic system with discontin-
uous coefficients. We first focus on the construction of w. We introduce

H0,curl (Ω) := {G ∈ Hcurl (Ω) | G×n = 0} ,
Hdiv=0 (Ω) := {G ∈ Hdiv (Ω) | ∇·G = 0} .

Owing to (4.10) with s = 0 (see also Costabel [3, Theorem 2]) and the Lax-Milgram
lemma, there exists a unique G ∈ H0,curl (Ω) ∩Hdiv=0 (Ω) such that the following
holds:

(4.26) (∇×G,∇×f) = (F,∇×f) , ∀f ∈ H0,curl (Ω) ∩Hdiv=0 (Ω) .

Since the above definition only involves ∇×f , we infer that the following holds also

(∇×G,∇×f) = (F,∇×f) , ∀f ∈ H0,curl (Ω) .

Setting w := ∇×G, the above equality implies that ∇×w = ∇×F. The equality
∇×w = ∇×F first holds in the distribution spaceDDD′(Ω), and then in H−t(Ω) taking
advantage of the regularity ∇×F ∈ H−t(Ω). We have w ∈ L2(Ω) with ∇·w = 0 and
∇×w ∈ H−t(Ω), i.e. w ∈ Z1−t(Ω). Moreover, the condition G×n|Γ = 0 implies

w·n|Γ = 0. Then Theorem 4.1 implies that w ∈ H
1
2 (Ω) and

(4.27) ‖w‖
H

1
2 (Ω)

≤ c‖∇×w‖H−t(Ω) = c‖∇×F‖H−t(Ω).

The equality∇×w = ∇×F yields the existence of p ∈ H1(Ω) such that F = w+∇p,
see e.g. Girault and Raviart [7, Theorem 2.9]. Up to an additive constant, we assume

that p ∈ Ḣ1(Ω) and we now derive Hs(Ω) estimates. The definition of p together
with the assumption ∇·(�F) = 0 implies that

(�∇p,∇q) = (�F,∇q)− (�w,∇q) = − (�w,∇q) , ∀q ∈ H1(Ω).

As a result, we have

(�∇p,∇q) = −(S(�w), q), ∀q ∈ Ḣ1(Ω).

Proposition 2.1 ensures that �w ∈ Hs(Ω) for all s < 1
2 , and Lemma 3.1 implies

that S(�w) ∈ Hs−1(Ω), so that

‖S(�w)‖Hs−1(Ω) ≤ ‖�w‖Hs
0(Ω) ≤ �maxNs,�‖w‖Hs(Ω) ≤ c‖w‖H 1

2 (Ω)
.
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We now can apply Theorem 3.1 with H1(Ω) = Ḣ1(Ω) and � = �. Let τ� be the
parameter defined in Theorem 3.1. Then p ∈ H1+s(Ω) for all s ∈ [0, τ�) and there
is a constant c so that

(4.28) ‖∇p‖Hs(Ω) ≤ c‖S(�w)‖Hs−1(Ω) ≤ c′‖w‖H 1
2 (Ω)

.

Recalling that and F = w + ∇p, we finally conclude that F ∈ Hs, and owing to
(4.27) and (4.28) we obtain the following estimate:

(4.29) ‖F‖Hs(Ω) ≤ c‖w‖H 1
2 (Ω)

≤ c′‖∇×F‖H−t(Ω) = c′ |F|Yt(Ω) .

This concludes the proof. �

Remark 4.1. The counterpart of Proposition 4.1 and Proposition 4.2 when � are
� are constant or smooth tensor fields is that Xs(Ω) and Ys(Ω) are continuously

embedded in H
1
2 (Ω). There is loss of regularity when the fields � are � are discon-

tinuous. See also Costabel et al. [5].

5. Application to Maxwell problem

We turn our attention in this section to the Maxwell problems mentioned in the
introduction. Using Theorem 3.1, we establish a priori estimates for the following
problem: Given g and b, find (E, p) so that

(5.1) ∇×(�−1∇×E) + ε∇p = g, ∇·(�E) = b, E×n|Γ = 0, p|Γ = 0.

5.1. Notation and preliminaries. If b is nonzero, we define p̃ ∈ H1
0 (Ω) so that

(5.2) (�∇p̃,∇r) = (b, r), ∀r ∈ H1
0 (Ω),

and we set E := Ẽ +∇p̃. Then the vector field Ẽ solves the Maxwell system (5.1)
with b = 0. Note in particular that ∇p̃ ∈ Hs(Ω) if b ∈ Hs−1(Ω), s ∈ [0, τ�) (see
Theorem 3.1). We now consider that b = 0 in the rest of the paper.

Let us consider the following space:

Xs
div=0(Ω) := {F ∈ Xs(Ω) | ∇·(�F) = 0} ,(5.3)

equipped with the canonical norm ‖F‖2Xs
div=0(Ω) := ‖F‖2L2(Ω) + ‖∇×F‖2H−s(Ω). We

anticipate (see proof of Theorem 5.1) that Problem (5.1) can be reformulated as
follows: Find E ∈ X0

div=0(Ω) and p ∈ H1
0 (Ω) such that the following hold:(

�−1∇×E,∇×F
)

= (g,F) , ∀F ∈ X0
div=0(Ω).(5.4)

(ε∇p,∇r) = (∇·g, r), ∀r ∈ H1
0 (Ω).(5.5)

Let us denote A : L2(Ω) 3 g 7→ E ∈ X0
div=0(Ω) the solution map for the model

problem Problem (5.4). We deduce an existence result as an immediate consequence
of Proposition 4.1, i.e., the linear operator A is well defined.

Proposition 5.1. Let the Assumption (4.1) hold. Problem (5.4) has a unique
solution E := Ag in X0

div=0(Ω) for any g ∈ L2(Ω) and there is a constant c,
independent of g, so that

(5.6) ‖Ag‖X0(Ω) ≤ c‖g‖L2(Ω).
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Proof. This is a direct application of the Lax-Milgram lemma. Indeed, for any
F ∈ X0

div=0(Ω), Proposition 4.1 implies that

‖F‖2X0(Ω) = ‖F‖2L2(Ω) + ‖∇×F‖2L2(Ω) ≤ c |F|
2
X0(Ω) + ‖∇×F‖2L2 .

After observing that |F|X0(Ω) = ‖∇×F‖L2 , since F ∈ X0
div=0(Ω), we conclude that

‖F‖2X0(Ω) ≤ c‖∇×F‖2L2 ≤ c�max

(
�−1∇×F,∇×F

)
,

and the bilinear form
(
�−1∇×F,∇×G

)
is coercive in X0

div=0(Ω). The rest of the
proof is standard. �

5.2. Regularity of the Maxwell problem. We now establish regularity esti-
mates for the solution of the Maxwell problem (5.4).

Theorem 5.1. Let the regularity Assumption 4.1 hold. There exist τ�, τ�, depend-
ing only on Ω, �, and � so that,

g ∈ L2(Ω) 7→ Ag ∈ Hs(Ω) is continuous for all s ∈ [0, τ�),(5.7)

g ∈ L2(Ω) 7→ ∇×Ag ∈ Hs(Ω) is continuous for all s ∈ [0, τ�).(5.8)

Proof. By applying Proposition 4.1 and Proposition 5.1, we infer that

‖Ag‖Hs(Ω) ≤ c |Ag|Xs(Ω) ≤ c‖∇×Ag‖L2(Ω) ≤ c′‖g‖L2(Ω),

which proves (5.7).
We now prove (5.8). We first establish that there exists p ∈ H1

0 (Ω) so that
∇×

(
�−1∇×Ag

)
= g − �∇p. Let F ∈ CCC∞0 (Ω) and let q ∈ H1

0 (Ω) be so that

(�∇q,∇r) = (�F,∇r), ∀r ∈ H1
0 (Ω),

and set w := F − ∇q. The definition of q implies that w×n|Γ = 0, ∇·(�w) = 0,
and ∇×w = ∇×F ∈ L2(Ω). As a result, w is a member of X0(Ω). This in turn
implies that(

�−1∇×Ag,∇×F
)

=
(
�−1∇×Ag,∇×w

)
= (g,w) = (g,F−∇q) .

Now let us define p ∈ H1
0 (Ω) so that

(�∇p,∇r) = (g,∇r), ∀r ∈ H1
0 (Ω).

Then, (
�−1∇×Ag,∇×F

)
= (g,F)− (�∇p,∇q) = (g,F)− (�F,∇p) .

Since F is an arbitrary member of CCC∞0 (Ω), the above equality implies that

∇×
(
�−1∇×Ag

)
+ �∇p = g, in (DDD(Ω))′.

The equality actually holds in L2(Ω) since g ∈ L2(Ω) and p ∈ H1
0 (Ω), and

‖∇×
(
�−1∇×Ag

)
‖L2(Ω) ≤ ‖g‖L2(Ω) + �max‖∇p‖L2(Ω) ≤ (1 + �max�

−1
min)‖g‖L2(Ω).

In conclusion �−1∇×Ag is a member of Hcurl(Ω).
Now let us observe that since ∇×Ag is a member of Hdiv (Ω), the condition

∇·(∇×Ag) = 0 together with the boundary condition Ag×n|Γ = 0 implies that
(∇×Ag)·n|Γ = 0. Moreover it is clear that ∇·(�(�−1∇×Ag)) = 0. In conclusion,
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�−1∇×Ag is a member of Y0(Ω). Using Proposition 4.2 with t = 0, we infer that
there is τ� > 0 so that the following holds for all s ∈ [0, τ�):

‖�−1∇×Ag‖Hs(Ω) ≤ c‖�−1∇×Ag‖Y0(Ω)

= c
(
‖�−1∇×Ag‖L2(Ω) + ‖∇×(�−1∇×Ag)‖L2(Ω)

)
≤ c′‖g‖L2(Ω).

We conclude by using the fact that E� is a continuous mapping from Hs(Ω) to
Hs(Ω) for all s ≤ τ� < 1

2 . �
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