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a b s t r a c t

The purpose of this note is to analyze the long term stability of the Navier–Stokes equations augmented
with the Coriolis force and supplemented stress boundary conditions. It is shown that spurious stability
behaviors can occur depending whether the Coriolis force is active or not when the flow domain is
axisymmetric.
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1. Introduction

The liquid core of the Earth is often modeled as a heated
conducting fluid enclosed between the solid inner core and the
mantle. Numerically simulating the dynamics of the liquid core
is difficult in many respects; one of the difficulties comes from
the presence of viscous layers that develop at the boundaries
of the fluid domain, i.e., the so-called inner core boundary (ICB)
and core–mantle boundary (CMB). It is a common practice in the
geophysics literature to use stress-free boundary conditions in
order to minimize the role played by the viscous layers. Although
this choice of boundary condition is convenient, it is not clear that
it is more physically justified than using the no-slip condition.
Actually, enforcing either the no-slip or the stress-free boundary
condition may lead to significantly different results when it
comes to simulating the geodynamo. For example, Glatzmaier and
Roberts [1] and Kuang and Bloxham [2,3] have used the above two
different sets of boundary conditions and have reported numerical
buoyancy-driven dynamos in rapidly rotating spherical shells that
differ in some fundamental aspects, see e.g. [4]. The simulations
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reported in [2] use the stress-free condition whereas those
reported in [1] use the no-slip condition. The dynamo simulated
in [2] has amagnetic field outside the core–mantle boundary that is
dominated by an axial dipole component, like that of the Earth, and
its intensity is close to the present geomagnetic dipole moment.
The internal magnetic field outside the core–mantle boundary
is comparable to that obtained by Glatzmaier and Roberts [1],
but important differences in the velocity and magnetic fields
between these two dynamos can be observed within the outer
core and the Taylor–Proudman tangent cylinder. (It is known
that rotation of the Earth rigidifies the flow field in the direction
parallel to the rotation axis through a mechanism known as the
Taylor–Proudman effect. This effect makes the imaginary cylinder
that is tangent to the equator of the solid inner core and whose
axis is parallel to the rotation axis of the Earth act like a solid
boundary.) In the dynamo reported in [2] the fluid flow is almost
stagnant inside the tangent cylinder and has a strong azimuthal
component outside; the magnetic field is active throughout the
outer core and is composed of two opposite toroidal cells and a
simple dipolar poloidal structure. In the dynamo reported in [1] the
fluid flow is composed of an intense polar vortex that is located
inside the tangent cylinder and extends in the two hemispheres;
the toroidal component of the magnetic field is active only inside
the tangent cylinder and is concentrated near the ICB; the poloidal
component has a complicated dipolar structure with extra closed
loops near the ICB. It is suggested in [4] that the significantly
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different structures of the above twodynamos should be attributed
to the nature of the boundary conditions that are imposed at
the ICB and CMB interfaces. Note finally that different thermal
boundary conditions (i.e., fixed temperature or fixed heat-flux
boundary conditions) lead also to different magnetic and fluid
solutions [5].

In addition to thermal or compositional convection due to
buoyancy, precession is also believed to be a possible source of
energy for the geodynamo. The precession hypothesis has been
formulated for the first time in [6] and experimentally investigated
using a water model in [7]. It has since then been actively studied
from the theoretical, experimental and numerical perspectives.
However, it seems that it is only recently that numerical examples
of precession dynamos have been reported in spheres [8,9],
in spheroidal cavities [10] and in cylinders [11]. Recently, Wu
and Roberts [10] have numerically studied the dynamo effect
in a precessing oblate spheroid. To facilitate their analysis the
authors have split the total velocity field into a basic stationary
analytic (polynomial) solution (the so-called Poincaré flow) and
a fluctuating part. Following ideas of Kerswell and Mason [12],
they have implemented the stress-free boundary condition on the
fluctuating component of the velocity in order to reduce the impact
of the viscous layers at the rigid boundaries.

The purpose of the present paper is to show that the use of
stress boundary conditions poses mathematical difficulties. We
prove for instance that, if the fluid domain is not axisymmetric,
the flow always returns to rest for large times when the stress-
free boundary condition is enforced (see Proposition 2.1), but this
may not be the case when the flow domain is axisymmetric (see
Proposition 2.3). Various scenarios can occur depending whether
the domain undergoes precession or not.

The note is organized as follows. We analyze the stress-free
boundary condition in general fluid domains in Section 2. We
show that this boundary condition is admissible if and only if the
domain is not axisymmetric (see Proposition 2.2). We revisit the
same question in axisymmetric domains that undergo precession
in Sections 3 and 4. We show in Section 3 that the problem
exhibits a spurious stability behavior if the stress-free condition
is enforced on the velocity field minus the Poincaré flow (i.e., on
the perturbation to the Poincaré flow; see Proposition 3.1). We
show in Section 4 that the problem always returns to rest for
large times if the homogeneous stress-free boundary condition is
enforced. The theoretical argumentation developed in Sections 3
and 4 is numerically illustrated in Section 5. Concluding remarks
are reported in Section 6.

2. Stress-free boundary condition without precession

The objective of this section is to investigate the long term
stability of the Navier–Stokes equations equipped with the stress-
free boundary condition. The fluid domain is denoted Ω and is
assumed to be open, bounded and Lipschitz.

2.1. Position of the problem

We are interested in the motion of an incompressible fluid in a
container Ω with boundary Γ . The container is assumed to be at
rest in an inertial reference frame. Denoting u the velocity of the
fluid and p the pressure, the fluid motion is modeled by means of
the incompressible Navier–Stokes equations:

∂tu + u · ∇u − 2ν∇ · ϵ(u)+ ∇p = 0, (2.1)
∇ · u = 0, (2.2)
u|t=0 = u0, (2.3)
where ν is the kinematic viscosity, ϵ(u) :=
1
2


∇u + ∇uT


is the

strain rate tensor, and u0 is an initial data inH := {v ∈ L2(Ω) : ∇ ·

v = 0, v · nΓ = 0}. It is a common practice to replace the
term ∇ ·


∇u + ∇uT


in the momentum equation by ∆u since

∇ · ∇uT
= 0 for incompressible flows. We nevertheless keep the

original form of the viscous stress since we want to enforce the so-
called stress-free boundary condition:

(n · ϵ(u))× n|Γ = 0, (2.4)

together with the impenetrable boundary condition:

n · u|Γ = 0, (2.5)

wheren is the unit outward normal onΓ . The stress-free condition
means that the tangent component of the stress at the boundary
is zero. We shall see that this boundary condition is admissible in
general for non-axisymmetric domains, but it yields pathological
stability behaviors if the fluid domain is a solid of revolution.

We are not going to discuss the well-posedness of the above
problem in its full generality since it is still unknown whether the
three-dimensional Navier–Stokes equations are well-posed under
the much simpler no-slip boundary condition. We nevertheless
recognize as a symptom of pathological stability behavior the fact
that there are solutions to (2.1)–(2.2)–(2.3)–(2.4)–(2.5) that do not
return to rest as t → +∞ ifΩ is axisymmetric.

Definition 2.1. We say that Ω is stress-free admissible if there is
a constant K > 0, possibly depending onΩ , so that the following
holds

K

Ω

v2 6


Ω

ϵ(v) : ϵ(v), ∀v ∈ H1(Ω), v · n|Γ = 0 (2.6)

where ‘‘:’’ denotes the tensor double product.

Proposition 2.1. Assume that Ω is stress-free admissible, then {0} is
the global attractor of (2.1)–(2.2)–(2.3)–(2.4)–(2.5).

Proof. Weomit the details concerning the existence of Leray–Hopf
solutions, which can be constructed using standard Galerkin
techniques [13–15], and we focus only on the aspects of the
question which are relevant to our discussion. It is clear that
{0} is an invariant set of (2.1)–(2.2)–(2.3)–(2.4)–(2.5). Let B be a
bounded set in H and let u0 ∈ B. Let u be a Leray–Hopf solution
corresponding to the initial datau0 and let v be a smooth solenoidal
vector field satisfying the impenetrable boundary condition. Upon
multiplying themomentum equation by v and integrating over the
domain we obtain
Ω

∂tu · v +


Ω

u · ∇u · v − 2ν

Ω

∇ · ϵ(u) · v +


Ω

∇p · v = 0.

Solenoidality and the impenetrable boundary condition imply that
Ω

∇p · v = −

Ω
p∇ · v +


Γ
pv · n = 0. Now, using the

decomposition

v = (n · v)n − n × (n × v) ,

and integrating by parts the viscous term we obtain:

−


Ω

∇ · ϵ(u) · v =


Ω

ϵ(u) : ∇v −


Γ

n · ϵ(u) · v

=


Ω

ϵ(u) : ϵ(v)+


Γ

(n · ϵ(u)× n) · (n × v)

=


Ω

ϵ(u) : ϵ(v).
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The transport term is re-written in the following form
Ω

u · ∇u · v =


Ω

1
2
∇ · (u(u · v))

+
1
2


Ω

(u · ∇u · v − u · ∇v · u)

=
1
2


Ω

(u · ∇u · v − u · ∇v · u) .

We now apply the above identities by replacing v by a sequence
{vn}n∈N that converges in the appropriate norm to u. By integrating
in time over an arbitrary interval (t1, t2) and by passing to the limit
(we omit the details again, see Sell [15, Section 2.3]), we finally
obtain

1
2


Ω

u2(t2, x) dx + 2ν
 t2

t1


Ω

ϵ(u) : ϵ(u) dx dτ

≤
1
2


Ω

u2(t1, x) dx. (2.7)

Note that equality is lost in the passage to the limit. Then using
(2.6), we infer the following inequality:

1
2


Ω

u2(t2, x) dx + 2Kν
 t2

t1


Ω

u2 dx dτ 6
1
2


Ω

u2(t1, x) dx,

which, owing to the Gronwall lemma (see Lemma 4.1), immedi-
ately leads to ∥u∥L2(Ω) 6 ∥u0∥L2(Ω)e

−2Kνt , thereby proving that
u → 0 as t → +∞. �

We shall see that the stress-free admissibility condition (2.6) does
not hold for axisymmetric fluid domains, which are common in
geoscience.

Remark 2.1. Note that whether equality holds in (2.7) in three
space dimensions is an open question related to the Navier–Stokes
Millennium Prize from the Clay institute. For this reasonwe refrain
from invoking the time derivative of the kinetic energy in the proof
of Proposition 2.1. The mapping t −→


Ω
u2 dx is a priori lower

semi-continuous only, and, upon denoting L2w(Ω) the space L2(Ω)
equipped with the weak topology, the mapping t −→ u ∈ L2w(Ω)
is continuous.

2.2. The non-axisymmetric case

To better understand the stress-free admissibility condition
(2.6), we first prove that it holds if and only if Ω is not
axisymmetric.

Definition 2.2. We say that Ω is axisymmetric (or is a solid of
revolution) if and only if there is a rotation R : Ω −→ Ω which is
tangent on Γ .

Upon introducing the average operator over Ω , ⟨v⟩ :=
1

|Ω|


Ω
v,

where |Ω| is the volume of Ω , the following lemma gives a
characterization of non-axisymmetric domains:

Lemma 2.1 (Desvillettes–Villani [16]). Assume that the domainΩ is
of class C1 but is not a solid of revolution, then there is c > 0 so that

c|Ω|⟨∇ × v⟩2 ≤ ∥ϵ(v)∥L2(Ω), ∀v ∈ H1(Ω), v · n|Γ = 0.

We are now in measure to state the main result of this section:

Proposition 2.2. Assume that the domainΩ is of class C1, thenΩ is
stress-free admissible if and only if Ω is not a solid of revolution.

Proof. Let us assume first that Ω is not a solid of revolution. Let
us now assume that (2.6) does not hold. We start from the Korn
inequality (cf. e.g. [17]): there exists a constant c > 0 such that, for
all v ∈ H1(Ω),

∥v∥L2(Ω) + ∥∇v∥L2(Ω) ≤ c

∥v∥L2(Ω) + ∥∇v + ∇vT∥L2(Ω)


. (2.8)

Since (2.6) does not hold, for any n ∈ N, one can find un ∈ H1(Ω)
such that

un · n|Γ = 0, ∥un∥L2(Ω) = 1, and ∥∇un + ∇uT
n∥L2(Ω) 6

1
n
.

The Korn inequality implies that the sequence un is bounded in
H1(Ω). Since the inclusion H1(Ω) ⊂ L2(Ω) is compact, there
exists u ∈ H1(Ω) such that (we keep using un after extraction of
the converging sub-sequence) ∥un − u∥L2(Ω) → 0 and un ⇀ u in
H1(Ω). We also have

∇un + ∇uT
n → 0 in L2(Ω) and

∇un + ∇uT
n → ∇u + ∇uT in D ′(Ω),

which finally gives ∇u + ∇uT
= 0 (D(Ω) is the space of smooth

vector-valued functions with compact support in Ω and D ′(Ω)
is the space of vector-valued distributions over Ω , i.e., the linear
forms acting on D(Ω).) Applying the Korn inequality to u − un
and using the fact that

∥un − u∥L2(Ω) + ∥∇un + ∇uT
n − ∇u − ∇uT

∥L2(Ω) → 0,

we infer that ∥un − u∥H1(Ω) → 0. This allows us to pass to
the limit on the boundary condition u · n|Γ = 0. The condition
ϵ(u) = 0 implies that there are two vectors t ∈ R3, ω ∈ R3 so that
u = t + ω × x. This means that ∇ × u = ⟨∇ × u⟩ = ω. Using
Lemma 2.1, we conclude that ω = 0, which means that u = t. The
boundary condition u · n|Γ = 0 implies t = 0; this in turn means
u = 0, which is impossible because ∥u∥L2(Ω) = 1. In conclusion,
(2.6) holds.

Let us assume now that Ω is axisymmetric. This means that
there is a rotation R : Ω −→ Ω which is tangent on Γ . Without
loss of generality we assume that the rotation axis is parallel to
ez and the coordinate origin is located on this axis. Then R(x) =

ωez × x and clearly R ∈ H1(Ω), R(x) · n(x)|Γ = 0, ∥R∥L2(Ω) ≠ 0
but (2.6) does not hold since ϵ(R) = 0. �

2.3. The axisymmetry curse

Let us assume thatΩ is axisymmetric.We are going to show the
following statement in this section.

Claim 2.1. The zero velocity field, 0, is in the global attractor
of (2.1)–(2.2)–(2.3)–(2.4)–(2.5), but the rest state, {0}, is not an
attractor. There are initial data that create flows that never return to
rest. In particular, if the initial data is a rigid-body rotation, the flow
will rotate for ever without losing energy.

Recall that it can be shown thatΩ is axisymmetric if and only if
Ω is either a sphere (and all the directions are symmetry axes) orΩ
has a unique symmetry axis.Without loss of generality, we assume
thatOz is the only symmetry axis ofΩ . Recall that all the rigid-body
rotations aboutOz can bewritten as follows x −→ ωez ×x,ω ∈ R,
where x is the position vector. We introduce the following space
R := span {ez × x} , (2.9)
and its orthogonal complement in L2(Ω), say R⊥.

Lemma 2.2. Let Ω be an open, bounded, connected, domain of class
C1 with unique symmetry axis Oz. There exists K > 0 such that the
following holds for every v ∈ R⊥

∩ H1(Ω) with v · n = 0:

K∥v∥2
L2(Ω) ≤


Ω

|ϵ(v)|2 dx,

where we denote |ϵ(v)|2 := ϵ(v) : ϵ(v).
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Proof. The proof is similar to that of Proposition 2.2 and proceeds
by contradiction. We consider a sequence vn ∈ R⊥

∩ H1(Ω) with
vanishing normal component such that

∥vn∥L2 = 1 and ∥ϵ(vn)∥L2 6
1
n
.

Using Korn’s inequality, we can prove that (up to extraction) vn
converges in H1(Ω), and the limit v satisfies

v ∈ R⊥, v · n = 0 and ϵ(v) = 0.

This implies that v is the sum of a translation plus a rigid-body
rotation. ButΩ being bounded the translation is zero. The unique
symmetry axis ofΩ being Oz, the condition v ·n = 0 implies that v
is a rigid-body rotation about the Oz-axis, i.e., v ∈ R ∩ R⊥

= {0},
which contradicts ∥v∥L2(Ω) = 1. �

We claim that the Navier–Stokes problem (2.1)–(2.2) equipped
with boundary conditions (2.4)–(2.5) has spurious stability prop-
erties due to the following proposition.

Proposition 2.3. (i)R is the global attractor of (2.1)–(2.2)–(2.3) –
(2.4)–(2.5). (ii) No element in R is an attractor.

Proof. (i) Let u ∈ L2((0,+∞); L2(Ω)) ∩ L∞((0,+∞);H1(Ω))
be a Leray–Hopf solution of (2.1)–(2.5) and consider the following
decomposition:

u(t) = u⊥(t)+ λ(t)ez × x, where
u⊥(t) ∈ R⊥, λ(t) ∈ R, ∀t ∈ [0,+∞).

Invoking Lemma 3.1 we infer that dλ(t)
dt = 0, implying that λ(t) =

λ(0) := λ0. Let t2 > t1 > 0 be two positive times, then u being a
Leray–Hopf solution implies that

∥u⊥(t2)∥2
L2(Ω) + czλ(t2)2 + 4ν

 t2

t1


Ω

|ϵ(u)|2 dx dτ

≤ ∥u⊥(t1)∥2
L2(Ω) + czλ(t1)2,

where cz := ∥ez × x∥2
L2(Ω). Since λ(t2) = λ(t1), Lemma 2.2 implies

∥u⊥(t2)∥2
L2(Ω) + 4νK

 t2

t1
∥u⊥

∥
2
L2(Ω) dτ ≤ ∥u⊥(t1)∥2

L2(Ω).

Using the Gronwall–Bellman inequality (see Lemma 4.1), we infer
that ∥u⊥(t)∥L2(Ω) ≤ ∥u0∥L2(Ω)e

−2νKt .
In conclusion

∥u(t)− λ0ez × x∥L2(Ω) = ∥u⊥(t)∥L2(Ω) ≤ ∥u0∥L2(Ω)e
−2νKt .

This implies that the global attractor, say A, is such that A ⊂ R,
but since λ0 spans R, we conclude that A = R.

(ii) Let us consider the rigid-body rotation field u = ωez × x ∈

R. It is clear that {u} is an invariant set, i.e., u is a steady-state
solution. Let B(u, ρ) ∈ H be the ball centered at u of arbitrary
radius ρ > 0. Let v = µez × x ∈ R, µ ≠ 0, be another rigid-body
rotation and assume thatµ is small enough so thatu+v ∈ B(u, ρ).
Clearly u + v satisfies (2.2), (2.4), (2.5) (recall that ϵ(u + v) = 0).
Let us observe that ∂t(u + v)− 2ν∇ · (ϵ(u + v)) = 0 and

(u + v) · ∇(u + v) = 2(u + v) · ϵ(u + v)
− (u + v) · (∇(u + v))T

= −
1
2
∇|u + v|2,

since u + v is a rigid-body rotation. Upon setting p =
1
2 |u + v|2

we conclude that u + v solves (2.1). This proves that u + v is
invariant (i.e., a steady-state solution). In other words u + v does
not converge to u, no matter how small ρ is, thereby proving that
the set {u} is not an attractor, no matter how large ν is. �

2.4. An admissible stress-free-like boundary condition

The principal motivation to consider the so-called stress-free
boundary condition is that it minimizes viscous layers and is
thus less computationally demanding than the no-slip boundary
condition. We have seen above that it unfortunately leads to
pathological stability properties when the computational domain
is axisymmetric. Onepossible remedy to this problem is to consider
the following non-symmetric boundary condition:
(n · ∇u)× n|Γ = 0. (2.10)
This condition expresses that the tangent components of the
normal derivative of the velocity field are zero. The physical
interpretation of this condition is definitely less appealing than
that of the stress-free boundary condition. However (2.10) and the
stress-free condition are equally numerically convenient. Themain
advantage we see in (2.10) over the stress-free condition is that it
yields standard stability properties, i.e., {0} is the global attractor.

Lemma 2.3. The following holds for all smooth solenoidal vector field
u that satisfies (n · ∇u)× n|Γ = 0:
Ω

−∇ · (ϵ(u)) · v =
1
2


Ω

∇u : ∇v,

∀v ∈ H1(Ω), v · n|Γ = 0. (2.11)

Proof. Upon observing that ∇ · (ϵ(u)) =
1
2∇ · (∇u) since u is

solenoidal, we infer that
Ω

−∇ · (ϵ(u)) · v =


Ω

−
1
2
∇ · (∇u) · v

=
1
2


Ω

∇u : ∇v −
1
2


Γ

(n · ∇u) · v

=
1
2


Ω

∇u : ∇v −
1
2


Γ

(n · ∇u) · ((n · v)n)

+
1
2


Γ

((n · ∇u)× n) · (n × v)

=
1
2


Ω

∇u : ∇v,

where we used again the decomposition v|Γ = (n · v)n − n ×

(n × v). �

Proposition 2.4. Assume that Ω is an open, connected, bounded Lip-
schitz domain, then {0} is the global attractor of (2.1)–(2.2)–(2.3) –
(2.10)–(2.5).
Proof. Repeat the argument in the proof of Proposition 2.1 using
Lemma 2.3 together with the following Poincaré-like inequality

K

Ω

v2 ≤


Ω

|∇v|2, ∀v ∈ H1(Ω), v · n|Γ = 0,

which can be shown to hold by proceeding as in the proof of
Proposition 2.2. �

3. Precession driven flow with Poincaré stress

If the fluid domain is a spheroid that undergoes precession, the
time-independent Navier–Stokes equations supplemented with
the impenetrable condition admit a so-called Poincaré solution.
We show in this section that, independently of the value of the
viscosity, the Poincaré solution is not an attractor of the problem if
the tangential stress at the boundary is enforced to be equal to that
of the steady-state Poincaré solution.
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3.1. Geometry and equations

The container is an ellipsoid of revolution of center O and
symmetry axis Oz. The unit vector along the Oz-axis is ez . The
unit vectors along the other two orthogonal axes Ox and Oy are ex
and ey, respectively. The surface of the spheroid is defined by the
equation

x2 + y2 + (1 + β)z2 = 1, (3.1)

where β > −1 and β ≠ 0. We assume that the Ox-axis is fixed in
an inertial reference frame and the container rotates about the Ox-
axis with angular velocity εex. The reference frame (O, ex, ey, ez)
is non-inertial, and the non-dimensional Navier–Stokes equations
describing the motion of the fluid in this reference frame are
written as follows:

∂tu + u · ∇u − 2ν∇ · ϵ(u)+ 2εex × u + ∇p = 0, (3.2)
∇ · u = 0, (3.3)
u|t=0 = u0. (3.4)

The only inertial effect to be considered in this frame is the Coriolis
force induced by the rotation about the Ox-axis. Note that the
definition of the pressure has been changed to account for the
centripetal acceleration, εex × (εex × x). We additionally enforce
the impenetrable boundary condition,

u · n|Γ = 0. (3.5)

The system (3.2)–(3.3)–(3.5) is known to admit a steady-state
solution called the Poincaré flow (see e.g. [10]) whose expression
is as follows:

uP = −yex +


x −

2ε
β
(1 + β)z


ey +

2ε
β

yez . (3.6)

Of course, uP does not solve the Navier–Stokes system (3.2)–(3.3)
equipped with the no-slip boundary condition. However, it has
been shown formally in Stewartson and Roberts [18] that if
the ellipsoid additionally rotates about the Oz-axis with angular
velocity ez and if ν → 0 and ε → 0, the no-slip Navier–Stokes
solution converges to uP when t → +∞, except in thin Ekman
layers on Γ . This result is the main reason why we are interested
in the Poincaré solution.

One way to force uP to be a Navier–Stokes solution consists of
proceeding as in [10] and to consider the problem (3.2)–(3.3)–(3.5)
equipped with the additional non-homogeneous boundary condi-
tion

(n · ϵ(u))× n|Γ = (n · ϵ(uP))× n|Γ . (3.7)

That is, we want the tangential component of the normal stress to
be equal to that of the Poincaré solution. As mentioned in [10], it is
clear that

Claim 3.1 (See [10]). uP is a steady state solution of (3.2)–(3.3) –
(3.5)–(3.7).

3.2. Long term stability

The question that we now want to investigate is whether there
is a threshold on ν beyond which uP is a stable solution as t →

+∞; i.e., does the flow return to uP independently of the initial
data as t → +∞ if ν is large enough. We show in this section
that the answer to this question is no, the fundamental reason
being that rigid-body rotations cannot be dampened by viscous
dissipation, no matter how large ν is.

Proposition 3.1. (i) For all ν > 0, {uP} is not an attractor of the
Navier–Stokes problem (3.2)–(3.3) equipped with the boundary
conditions (3.5)–(3.7).
(ii) {uP} + R is the global attractor if ε/ν < 2K where K is the
Korn constant introduced in Lemma 2.2, and the convergence to
the attractor is exponential.

Proof. Let us first prove item (i). Let ρ > 0 be an arbitrary positive
number. Let B(uP , ρ) ⊂ H be a ball of radius ρ centered at uP . Let
w = ωez×r be a rigid-body rotation about theOz-axis, and assume
thatω ≠ 0 is small enough so that uP +w ∈ B(uP , ρ). Let us prove
that uP + w is a steady state solution of (3.2)–(3.3)–(3.5)–(3.7).
Owing to ϵ(w) = 0,w · n|Γ = 0, ∇ · w = 0, it is clear that uP + w
is solenoidal and satisfies the boundary conditions (3.5)–(3.7). Let
us now show that it is possible to find a pressure field so that
the steady state momentum equation holds. Let us first prove that
uP · ∇w + w · ∇uP + 2εex × w is a gradient. A straightforward
computation gives:

uP · ∇w = ω


2ε
β
(1 + β)z − x

−y
0

 , w · ∇uP = ω

−x
−y
2ε
β

x

 ,
2εex × w = ω

 0
0

2εx


,

so that

uP · ∇w + w · ∇uP + 2εex × w = −∇

ω(x2 + y2)


+ ∇


2εω
β
(1 + β)xz


. (3.8)

Let us then define q(x) := −ω(x2+y2)+ 2εω
β
(1+β)xz. Observe that

we can define the pressure field r(x) so that ∇r := −uP · ∇uP −

2εex × uP , since uP solves (3.2). Let us finally observe that

w · ∇w = −
1
2
∇|w|

2. (3.9)

Then we conclude that uP + w solves Eq. (3.2) with p = q +

r −
1
2 |w|

2. In particular if we set u0 = uP + w, then uP + w
remains a solution forever, i.e., the solution does not converge to
uP as t → +∞, no matter how small ρ is and nomatter how large
ν is. This proves that although {uP} is an invariant set, it is not an
attracting set.

We now prove item (ii). Let u ∈ L2((0,+∞); L2(Ω)) ∩

L∞((0,+∞);H1(Ω)) be a Leray–Hopf solution of (3.2)–(3.3)–
(3.5)–(3.7). Similarly to what has been done in the proof of
Proposition 2.3 we consider the following decomposition

u(t)− uP = u⊥(t)+ λ(t)ez × x, where
u⊥(t) ∈ R⊥, λ(t) ∈ R, ∀t ∈ [0,+∞),

and let us denote w = λ(t)ez × x. Upon testing the momentum
equation with u⊥(t)we formally obtain:

1
2
∥u⊥(t2)∥2

L2(Ω) −
1
2
∥u⊥(t1)∥2

L2(Ω) + 2ν
 t2

t1
∥ϵ(u⊥(t))∥2

L2(Ω) dt

+

 t2

t1


Ω

((u − uP) · ∇u + uP · ∇(u − uP)

+ 2εex × (u − uP)) · u⊥(t) dx dt ≤ 0.

A rigorous proof would require a passage to the limit à la Sell
[15, Section 2.3]. Using the decomposition u − uP = u⊥

+ w
together with (3.8) and (3.9), we obtain

1
2
∥u⊥(t2)∥2

L2(Ω) −
1
2
∥u⊥(t1)∥2

L2(Ω) + 2Kν
 t2

t1
∥u⊥(t)∥2

L2(Ω) dt

+

 t2

t1


Ω


u⊥(t) · ∇(uP + w) · u⊥(t)


dx dt ≤ 0.
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Using that v · ∇w · v = 0 for any vector field v, we finally infer the
following energy estimate:

1
2
∥u⊥(t2)∥2

L2(Ω) −
1
2
∥u⊥(t1)∥2

L2(Ω) + 2Kν
 t2

t1
∥u⊥(t)∥2

L2(Ω) dt

− 2ε
 t2

t1


Ω

u⊥

y (t)u
⊥

z (t) dx dt ≤ 0,

where we used v · ∇uP · v = −2εvyvz for any vector field v. Then
using Lemma 4.1 and assuming that ε/ν < 2K , we conclude that
∥u⊥(t)∥2

L2(Ω) ≤ ∥u⊥

0 ∥
2
L2(Ω)e

−2(2Kν−ε)t . Using (3.13), we deduce that

(λ(t2)− λ(t1))

Ω

(ez × x)2

= −ε

 t2

t1


Ω

ey · (x × (λ(τ )(ez × x)+ u⊥)).

But Lemma 3.2 implying that
Ω

ey · (x × (λ(τ )(ez × x))) = λ(τ)


Ω

ey · (x × (ez × x))

= 2λ(τ)

Ω

(ez × x) · (ex × (ez × x)) = 0,

we finally infer that

|λ(t2)− λ(t1)|

Ω

(ez × x)2 ≤ ε

 t2

t1


Ω

|ey · (x × u⊥)|

≤ cµ−1 e−µt1 − e−µt2

,

where c is a generic constant andµ := 2Kν − ε. This immediately
implies that λ(t) converges exponentially to a constant. In
conclusion u(t) − uP converges exponentially fast to an element
in R as t tends to infinity. �

Remark 3.1. Proposition 3.1 is the generalization of Proposi-
tion 2.3 with ε ≠ 0. Item (ii) of Proposition 3.1 is similar in spirit
to the result of Stewartson and Roberts [18].

3.3. Angular momentum balance

Let us now mention a result on the balance of the angular
momentum. Let us assume that u solves (3.2)–(3.3) with the
boundary conditions

n · u = 0 on Γ , (3.10)
(n · ϵ(u))× n = g × n on Γ , (3.11)

where the field g is a boundary data. Let us now define the angular
momentum

M :=


Ω

x × u. (3.12)

Lemma 3.1. Denoting by Mz and My the z- and y-component of M,
respectively, all the weak solutions of (3.2)–(3.3)–(3.10)–(3.11) sat-
isfy

∂tMz + εMy

= −


Γ

ν(g × n) · ((ez × x)× n), a.e. t ∈ (0,+∞). (3.13)

Proof. Observing that Mz =

Ω
(ez × x) · u, we multiply (3.2) by

ez × x and integrate over Ω . Using the divergence free condition
together with (3.10) and integrating by parts, we infer that

Ω

(ez × x) · (u · ∇u) =


Ω

∇ · (u ⊗ u) · (ez × x)

=


Γ

(u · n) (u · (ez × x)) = 0,

where we used that (u⊗u) : ∇(ez ×x) = 0 since thematrix u⊗u
is symmetric and∇(ez ×x) is anti-symmetric. The same argument
applies to the viscous term
Ω

(ez × x) · ν∇ · (ϵ(u)) =


Γ

ν(ϵ(u) · n) · (ez × x)

=


Γ

ν(g × n) · ((ez × x)× n),

where we used ez × x = (ez × x) × n since (ez × x) · n|Γ = 0.
The same argument applies again for the pressure term since∇p =

∇ · (pI)where I is the identity matrix.
Ω

(ez × x) · ∇p =


Γ

p(ez × x) · n = 0.

We now deal with the Coriolis term by applying Lemma 3.2:
Ω

(ez × x) · (ex × u) =
1
2


Ω

ey · (x × u) =
1
2
My.

The conclusion follows readily. �

Lemma 3.2. Let v ∈ L1(Ω) be an integrable vector field such that
∇ · v = 0 and v · n|Γ=0, then
Ω

ey · (x × v) = 2

Ω

(ez × x) · (ex × v). (3.14)

Proof. Let us first observe that

Ω
(ez × x) · (ex × v) = −


Ω
xvz .

Noticing that

Ω
xvz + zvx =


Ω
v · ∇(zx) = 0 since ∇ · v = 0 and

v · n|Γ = 0, we infer that
Ω

(ez × x) · (ex × v) = −


Ω

xvz =
1
2


Ω

zvx − xvz

=
1
2


Ω

ey · (x × v),

which concludes the proof. �

Remark 3.2. If we choose g = ϵ(uP) · n like in Eq. (3.7), then
−

Γ
ν(g×n)·((ez×x)×n) is equal to−


Ω
(ez×x)·ν∇·(ϵ(uP)) =

0 and the balance equation of the angular momentum in the z
direction simplifies to ∂tMz + εMy = 0.

Remark 3.3. Note that (3.13) is just a consequence of (3.2)–(3.3)–
(3.10)–(3.11). This balance holds whether the long term stability of
(3.2)–(3.3)–(3.10)–(3.11) is spurious or not. It is false to consider
that (3.13) is an additional equation that fixes the long term
stability behavior of the system.

4. Precession driven flowwith stress-free boundary conditions

We show in this section that if we enforce (n · ϵ(u))×n|Γ = 0,
instead of enforcing (n · ϵ(u)) × n|Γ = (n · ϵ(uP)) × n|Γ in
(3.2)–(3.3)–(3.10), then 0 becomes the unique stable solution as
t → +∞, i.e., {0} is the global attractor.

4.1. Long time stability

The setting of the problem is the same as in Section 3.1 except
that we enforce the tangential component of the normal stress to
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be zero at the boundary.

∂tu + u · ∇u − 2ν∇ · ϵ(u)+ 2εex × u + ∇p = 0 inΩ (4.1)
∇ · u = 0 inΩ (4.2)
n · u = 0 on Γ (4.3)
(n · ϵ(u))× n = 0 on Γ (4.4)
u|t=0 = u0 inΩ. (4.5)

The result that we want to emphasize is that contrary to what
we observed in Section 3, 0 becomes the unique stable solution of
(4.1)–(4.5) as t → +∞. The main result that we want to prove
here is that any solution of the system (4.1)–(4.4) returns to rest as
t → +∞. This fact has been mentioned in [10] without proof. The
key argument is that rigid-body rotations about the Oz axis are not
stationary solutions of (4.1).

Theorem 4.1. {0} is the global attractor of (4.1)–(4.5).

Proof. Let us start by observing that {0} is indeed an invariant set
of (4.1)–(4.5). Let B(0, ρ) be the unit ball in H centered at 0 and
of radius ρ. Let u0 ∈ B(0, ρ) and let u ∈ L2((0,+∞); L2(Ω)) ∩

L∞((0,+∞);H1(Ω)) be a Leray–Hopf solution of (4.1)–(4.5) and
consider the following decomposition:

u(t) = u⊥(t)+ λ(t)ez × x, where
u⊥(t) ∈ R⊥, λ(t) ∈ R, ∀t ∈ [0,+∞).

Lemma 2.2 together with u being a Leray–Hopf solution implies
that

∥u⊥(t)∥2
L2(Ω) + czλ(t)2 + 4νK

 t

0
∥u⊥(τ )∥2

L2(Ω) dτ ≤ ∥u0∥
2
L2(Ω)

where cz = ∥ez × x∥2
L2 (recall t −→ u(t) is continuous in the

L2-weak topology). Let t2 > t1 in (0,+∞), then (3.13) means that

|λ(t2)− λ(t1)|

Ω

(ez × x)2 ≤ ε

 t2

t1


Ω

|(ey × x) · u|

≤ ε|t2 − t1|∥u0∥L2∥(ey × x)∥L2 ,

thereby proving that t −→ λ(t) is uniformly Lipschitz over
(0,+∞). Since u is a Leray–Hopf solution we also have

∥u⊥(t2)∥2
L2 − ∥u⊥(t1)∥2

L2 + (λ(t2)2 − λ(t1)2)∥ez × x∥2
L2

+ 4ν
 t2

t1


Ω

|ϵ(u)|2 ≤ 0.

This in turn implies that

∥u⊥(t2)∥2
L2 − ∥u⊥(t1)∥2

L2

t2 − t1

≤ (|λ(t2)+ λ(t1)|)
|λ(t2)− λ(t1)|

|t2 − t1|
∥ez × x∥2

L2

≤ 2ε∥u0∥
2
L2∥ey × x∥L2∥ez × x∥−1

L2 =: γ .

In conclusion the function t −→ ∥u⊥(t)∥2
L2 satisfies the assump-

tions of Lemma 4.2. We then infer that ∥u⊥
∥L∞((t,+∞);L2) → 0 as

t → +∞.
Let δ > 0 be an arbitrarily small number. Let tδ be so that

∥u⊥
∥L∞((t,+∞);L2) ≤ δ for all t ≥ tδ . Let t2 > t1 ≥ tδ in (0,+∞)

then the energy balance implies

∥u⊥(t2)∥2
L2 + czλ(t2)2 ≤ ∥u⊥(t1)∥2

L2 + czλ(t1)2,

which also gives

λ(t2)2 ≤ λ(t1)2 + 2c−1
z δ2.
Lemma 4.3 in turn implies that λ(t) converges to real a number λ∞

as t goes to infinity, since λ is a continuous function. Using (3.13)
again, we infer that

(λ(t2)− λ(t1))

Ω

(ez × x)2

= −ε

 t2

t1


Ω

ey · (x × (λ(τ )(ez × x)+ u⊥)).

But Lemma 3.2 implying that
Ω

ey · (x × (λ(τ )(ez × x))) = λ(τ)


Ω

ey · (x × (ez × x))

= 2λ(τ)

Ω

(ez × x) · (ex × (ez × x)) = 0,

we finally infer that

|λ(t2)− λ(t1)|

Ω

(ez × x)2 ≤ ε

 t2

t1


Ω

|ey · (x × u⊥)|

≤ cδ|t2 − t1|,

where c is a generic constant that depends on Ω and may vary at
each occurrence from now on. Let us take ϕ ∈ D(Ω) independent
of time and divergence-free. Since u is a Leray solution we have

0 =


Ω

(u(t2, x)− u(t1, x)) · ϕ(x) dx

+

 t2

t1


Ω

2εu(τ , x) · (ϕ(x)× ex) dx dτ

−

 t2

t1


Ω

2νu(τ , x) · ∇ · ϵ(ϕ) dx dτ

−

 t2

t1


Ω

(u(x)⊗ u(x)) : ∇ϕ(x)dx dτ .

Let us now set t2 = t1+1. Upon observing that

Ω
((ez ×x)⊗(ez ×

x)) : ∇ϕ(x)dx = 0 and

Ω
(ez × x) · ∇ · ϵ(ϕ) dx = 0. This implies

that there is a constant c(ϕ) ≥ 0 so that

2ε
 t2

t1
λ(τ) dτ


Ω

(ez × x) · (ϕ(x)× ex) dx


≤

(λ(t2)− λ(t1))

Ω

(ez × x) · ϕ(x) dx
+ c(ϕ)δ.

Let us choose ϕ so that 2ε

Ω
(ez × x) · (ϕ(x) × ex) dx = 1. The

above estimate implies that t1+1

t1
λ(τ) dτ

 ≤ c(ϕ)δ.

This implies that λ∞ = limt1→∞

 t1+1
t1

λ(τ) dτ ≤ c(ϕ)δ, which
means that λ∞ = 0. In conclusion

lim
t→+∞

∥u∥L∞((t,+∞);L2) = 0, (4.6)

which concludes the proof. �

4.2. Useful lemmas

We start by recalling a standard version of the Gron-
wall–Bellman inequality.

Lemma 4.1. Let u ∈ L∞((0, T ); R+) and assume that u is lower-
semi-continuous and there exists λ ∈ R so that the following holds

u(t2)+ λ

 t2

t1
u(τ ) dτ ≤ u(t1), ∀t2 > t1 > 0,
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then

0 ≤ u(t) ≤ u(0)e−λt , ∀t ∈ [0, T ]. (4.7)

Lemma 4.2. Let α ∈ L1((0,+∞); R+) be a nonnegative integrable
function. Assume that there exists a constant β so that

ess sup
t≠τ

α(t)− α(τ)

t − τ
≤ γ , (4.8)

then limt→+∞ ∥α∥L∞((t,+∞);R+) = 0.

Proof. Let M = {t > 0, ess supt≠τ
α(t)−α(τ)

t−τ < +∞} and for all
t ∈ M let Mt = {τ > 0, supt≠τ

α(t)−α(τ)
t−τ < +∞}. Note that

meas(R+ \ M) = 0 and meas(R+ \ Mt) = 0. Let us proceed by
contradiction. Assume that there exists c > 0 so that for all t > 0,
∥α∥L∞((t,+∞);R+) ≥ c. Let us set t0 = 0. Since α is integrable, there
is a set A∗

1 ⊂ (t0 + 1,+∞) of positive measure and diameter 1 so
that α(τ) ≤

1
2 c , for all τ in A∗

1 . Let t
∗

1 ∈ A∗

1 ∩ M (note that this set
cannot be empty). Then, there is set A1 ⊂ (t∗1 + 1,∞) of positive
measure and diameter 1 so that α(τ) ≥

3
4 c , for all τ in A1. Let

t1 ∈ A1∩Mt∗1
(note that this set cannot be empty). By repeating the

above argument we construct an increasing sequence t∗1 < t1 <
t∗2 < t2 < · · ·Note that the hypothesis (α(ti)−α(t∗i ))/(ti−t∗i ) ≤ γ
implies that ti − t∗i ≥ c/(4γ ) for all i ≥ 1. Let us consider the time
t̂i := ti − c/4γ ≥ t∗i > ti−1. The following holds owing to (4.8)

c
2

≤
3c
4

−
c
4

≤ α(ti)− γ (ti − τ) ≤ α(τ), a.e. τ ∈ (t̂i, ti).

This means that
 ti
t̂i
α(τ) dτ ≥

c2
8γ for all t̂i, which contradicts the

fact that α is integrable. �

Lemma 4.3. Let ψ ∈ C0([0,+∞); R+) so that for all δ > 0 there
is tδ ≥ 0 so that for all t2 ≥ t1 ≥ tδ , ψ(t1) + δ ≥ ψ(t2), then ψ(t)
converges to a finite limit as t goes to infinity.
Proof. Let ψ := lim supt≥0 ψ(t) and ψ := lim inft≥0 ψ(t). Let
δ > 0 be a positive real number. There are t1 ≥ tδ and t2 ≥ t1 ≥ tδ
so that

ψ(t1) ≤ ψ + δ, and ψ − δ ≤ ψ(t2),

which in turn implies that

ψ − δ ≤ ψ(t2) ≤ ψ(t1)+ δ ≤ ψ + 2δ.

In conclusion ψ ≤ ψ + 3δ, which implies ψ = ψ since δ is
arbitrary. This completes the proof. �

5. Numerical illustrations

Wenow illustrate themathematical results fromSection 3–4 by
performing numerical simulations with the geometry used in [10].
The simulations are performed using the SFEMaNS code [19]
which has been extensively validated on precession flows [11].
The authors of [10] study the dynamo action in an oblate spheroid
defined by Eq. (3.1)withβ = 0.5625 (this corresponds to the value
b = 0.8 for the semi-minor axis used in [10], b := (1 + β)−

1
2 ).

This spheroid rotates about theOz-axis andprecesses about theOx-
axis with a precession rate ε. Two sets of boundary conditions are
considered: either the homogeneous stress-free boundary or the
Poincaré stress condition is enforced. The normalization is done so
that the Reynolds number is equal to ν−1.

5.1. Stress-free boundary condition

The first simulation solves the equations (4.1)–(4.2)–(4.3)–(4.4)
with stress-free boundary conditions using the initial data u|t=0 =

0.1ez × x = 0.1(−yex + xey). The normalized viscosity is ν =

0.024 and the precession rate is ε = 0.25 as in [10]. The left
panel in Fig. 1 shows the time derivative of the total energy
EK =

1
2∥u∥

2
L2 in the precessing frame. Note that ∂tEK is always

negative, establishing that EK is a decreasing function. This graph
is in excellent agreement with Fig. 1(a) of [10]. It also shows
that u → 0 as t → ∞ in agreement with (4.6) (i.e., {0} is
indeed the global attractor). The right panel in the figure shows
the time derivative of the angular momentum along the Oz-axis
and the quantity 50(∂tMz + εMy) evaluated numerically at each
time step (see Lemma 3.1). We observe that ∂tMz + εMy is zero
up to truncation errors as expected. This graph is also in excellent
agreement with Fig. 1(b) of [10].

5.2. Poincaré stress boundary condition

5.2.1. Small Reynolds number flows
The second series of simulations solves equations (3.2)–(3.3)–

(3.5)–(3.7) with the Poincaré stress boundary condition using
different initial data and with the precession rate ε = 0.025. This
precession rate is chosen so that ε/ν is small (with ν = 1). The
spatial resolution of the meridian mesh is 1/40, and 16 Fourier
modes are used in the azimuthal direction. We test two different
perturbations denoted PERT1 and PERT2. PERT1 corresponds to the
initial condition u0 = uP + (1 + rand(r, z))ez × xwhere uP is the
Poincaré solution and rand(r, z) is a random function of amplitude
in the range [−0.5, 0.5]. PERT2 corresponds to the initial condition
u0 = uP + ez × x + v where v is a perturbation without rigid-
body rotation, v(r, θ, z) = ( r2 sin(θ), r cos(θ), 0), where (r, θ, z)
are the cylindrical coordinates about the Oz-axis. The y- and z-
components of the angular momentum of the initial data of PERT1
are (0, 2.67842046). The y- and z-components of the angular
momentum of the initial data of PERT2 are (0, 2.68077560). The
z-component of the angular momentum is a measure of the rigid-
body rotation of the initial data. Note that the z-component of the
angular momentum of the initial data of PERT2 is the same as that
of the rigid-body rotation 2ez × x. We show in Figs. 2 the time
evolution of the quantities δEK =

1
2∥u−uP∥

2
L2(Ω) and ∥u⊥(t)∥L2(Ω)

and of the y- and z-components of the angular momentum
(denotedMy andMz in the figures, respectively). The two solutions
tend to two different steady states with two different rigid-body
rotations about the Oz-axis, and these rigid-body rotations are
different from those of the initial data (see Fig. 2(d)). This is due to
the fact that, even if the y-component of the angular momentum
of the initial data is zero for both initial data, the angular
momentum balance implies that the y-component of the angular
momentum departs from zero when t > 0, thereby perturbing
the z-component of the angular momentum via the conservation
equation ∂tMz+εMy = 0 (see Fig. 2(c)). The velocity componentu⊥

of the two steady states is zero as expected, up to truncation errors
induced by the space discretization, (see Fig. 2(b)). These results
illustrate the fact that, provided ε/ν is small enough, {uP} + R
is the global attractor of (3.2)–(3.3)–(3.5)–(3.7), but no element in
{uP} + R is an attracting set, meaning that the rigid-body rotation
of the final steady state can differ from that of its initial data.

5.2.2. Large Reynolds number flows
In the third series of simulationswe solve equations (3.2)–(3.3)–

(3.5)–(3.7) with the Poincaré stress boundary condition at a larger
Reynolds number with the precession rate ε = 0.25 that is used
in [10]. We use ν = 0.00375 and the initial data is the Poincaré
solution. Fig. 3 shows the time evolution of δEK =

1
2∥u − uP∥

2
L2(Ω)

from t = 0 to t = 2800, obtained with the SFEMaNS code. The
mesh size in the meridian section is of order 1/80 and 16 Fourier
modes are used in the azimuthal direction. Note that contrary to
what is shown in Figs. 5 and 6 of Ref. [10], the system does not
converge to an oscillating state, and the order of magnitude of δEK
in our computation is at least 6 times larger than that reported in
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Fig. 2. (Color online) Precessing spheroid with β = 0.5625, ε = 0.025 and ν = 1 with the Poincaré stress boundary condition (solutions of (3.2)–(3.3)–(3.5)–(3.7)). Time
evolution of (a) the kinetic energy, δEK =

1
2 ∥u − uP∥

2
L2(Ω) , with two different perturbations (PERT1 and PERT2, see text) as initial data, (b) ∥u⊥(t)∥L2(Ω) , (c) My , (d)Mz .
Fig. 6 of [10]. This contradictory result is reproduced by another
colleague using a totally different and independent code based on
a Finite Volume algorithm (S. Vantieghem, ETH, Zurich, Switzer-
land, personal communication). The quantity δEK from the Finite
Volume code is at least 3 times larger than that reported in Fig. 6
of [10] (data not shown). These results illustrate the fact that the at-
tractor of (3.2)–(3.3)–(3.5)–(3.7)with the Poincaré stress boundary
condition has pathological properties. The dynamo results of [10]
based on the Poincaré stress boundary condition may therefore be
questioned.
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Fig. 3. Precessing spheroid with β = 0.5625, ε = 0.25, ν = 0.00375, and
the Poincaré stress boundary condition (solutions of (3.2)–(3.3)–(3.5)–(3.7)). Time
evolution of the kinetic energy, δEK =

1
2 ∥u − uP∥

2
L2(Ω) , with the Poincaré solution

as initial data.

6. Discussion

The so-called stress-free boundary condition (n·ϵ(u))×n|Γ = 0
is often used in the geophysics literature to avoid issues induced by
viscous layers. For example, an anelastic dynamo benchmark [20]
was conducted very recently in a rotating spherical shell. The
authors emphasize in their concluding section the difficulties
they encountered to obtain the same hydrodynamical solutions
using four different codes in a model with stress-free boundary
conditions applied to the ICB and the CMB. Since the container
in this benchmark has the spherical symmetry (spherical shell),
the balance equation (3.13) gives ∂tM = 0 in the inertial
reference frame, and each group had to apply some remedy in
order to numerically conserve the three components of the angular
momentum. But, more importantly, they also had to use the same
initial condition. This difficulty did not arise in the older dynamo
benchmark [21] using the same geometry because the no-slip
boundary condition was prescribed at the ICB and CMB.

We have proved in this work that the stress-free boundary
condition with no precession leads to spurious stability behaviors
when the fluid domain is axisymmetric. This problem is still
present when precession is accounted for and the Poincaré stress
boundary condition is imposed. One recovers stability at large
times with precession when the stress-free boundary condition is
enforced.

We hope that the present work will help draw the attention
of the geodynamo community on this problem. The above
pathological stability behaviors can be avoided by enforcing one
additional condition. For instance, for problem (3.2)–(3.5) and
(3.7), one could think of enforcing the vertical component of the
angular momentum of the difference u − uP , say
Γ

(u − uP) · (ez × x) ds = 0, (6.1)

or enforcing u − uP and uP to be orthogonal in average over the
boundary, say
Γ

(u − uP) · uP ds = 0. (6.2)

For problem (2.1)–(2.5), one could think of enforcing the vertical
component of the total angular momentum
Γ

u · (ez × x) ds = 0, (6.3)

as was done for the three components in the anelastic dynamo
benchmark [20].
We have suggested in Section 2.4 to use a boundary condition
that does not have the stability problemsmentioned above. For the
problem (2.1)–(2.5) this condition is

(n · ∇u)× n|Γ = 0, (6.4)

and for the problem (3.2)–(3.5) this condition is

(n · ∇u)× n|Γ = (n · ∇uP)× n|Γ . (6.5)

Let us finally emphasize that it is false to consider that
the momentum balance equation (3.13) is an additional equa-
tion that makes (3.2)–(3.3)–(3.5)–(3.7) a well-behaved dynam-
ical system. The Eq. (3.13) is a redundant consequence of
(3.2)–(3.3)–(3.5)–(3.7). For instance, (6.1) (or (6.2) or (6.3)) is an
additional equation whereas (3.13) is not.

In conclusion, using the stress boundary condition to evaluate
nonlinear behaviors of Navier–Stokes systems may sometimes be
dubious when the domain is axisymmetric.

Acknowledgments

The authors are happy to acknowledge helpful email discus-
sions with P.H. Roberts and P. Boronski. They also want to thank
David Cébron, Wietze Herreman, and Stijn Vantieghem for stim-
ulating discussions. The HPC resources were provided by GENCI-
IDRIS (grant 2012-0254) in France. J.-L. Guermond acknowledges
support from University Paris Sud 11 and the National Science
Foundation grant NSF DMS-1015984.

References

[1] G.A. Glatzmaier, P.H. Roberts, A three-dimensional self-consistent computer
simulation of a geomagnetic field reversal, Nature 377 (1995) 203–209.

[2] W. Kuang, J. Bloxham, An Earth-like numerical dynamo model, Nature 389
(1997) 371–374.

[3] W. Kuang, J. Bloxham, Numerical modeling of magnetohydrodynamic
convection in a rapidly rotating spherical shell: weak and strong field dynamo
action, J. Comput. Phys. 153 (1) (1999) 51–81.

[4] P. Olson, Probing Earth’s dynamo, Nature 389 (1997) 337–338.
[5] A. Sakuraba, P. Roberts, Generation of a strong magnetic field using uniform

heat flux at the surface of the core, Nature Geosci. 2 (2009) 802–805.
[6] E. Bullard, The magnetic field within the Earth, Proc. Roy. Soc. Lond. A 197

(1051) (1949) 433–453.
[7] W.V.R. Malkus, Precession of the Earth as the Cause of Geomagnetism, Science

160 (3825) (1968) 259–264.
[8] A. Tilgner, Precession driven dynamos, Phys. Fluids 17 (3) (2005) 034104.
[9] A. Tilgner, Kinematic dynamos with precession driven flow in a sphere,

Geophy. Astrophy. Fluid Dynamics 101 (1) (2007) 1.
[10] C.-C. Wu, P. Roberts, On a dynamo driven by topographic precession, Geophy.

Astrophy. Fluid Dynamics 103 (6) (2009) 467–501.
[11] C. Nore, J. Léorat, J.-L. Guermond, F. Luddens, Nonlinear dynamo action in a

precessing cylindrical container, Phys. Rev. E 84 (Jul) (2011) 016317.
[12] R. Mason, R. Kerswell, Chaotic dynamics in a strained rotating flow: a

precessing plane fluid layer, J. Fluid Mech. 471 (2002) 71–106.
[13] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non

linéaires, volume 1. Dunod, Paris, France, 1969.
[14] R. Temam, Navier-Stokes equations, in: Theory and numerical analysis, With

an appendix by F. Thomasset, third edition, in: Studies in Mathematics and its
Applications, vol. 2, North-Holland Publishing Co., Amsterdam, 1984.

[15] G. Sell, Global attractors for the three-dimensional Navier–Stokes equations,
J. Dynam. Differential Equations 8 (1996) 1–33. http://dx.doi.org/10.1007/
BF02218613.

[16] L. Desvillettes, C. Villani, On a variant of Korn’s inequality arising in statistical
mechanics, ESAIM Control Optim. Calc. Var. 8 (2002) 603–619. (electronic) A
tribute to J. L. Lions.

[17] G. Duvaut, J.-L. Lions, Les inéquations en mécanique et en physique. Dunod,
1972.

[18] K. Stewartson, P.H. Roberts, On the motion of liquid in a spheroidal cavity of a
precessing rigid body, J. Fluid Mech. 17 (01) (1963) 1–20.

[19] J.-L. Guermond, J. Léorat, F. Luddens, C. Nore, A. Ribeiro, Effects of
discontinuous magnetic permeability on magnetodynamic problems,
J. Comput. Phys. 230 (2011) 6299–6319.

[20] C. Jones, P. Boronski, A. Brun, G. Glatzmaier, T. Gastine, M. Miesch, J. Wicht,
Anelastic convection-driven dynamo benchmarks, Icarus 216 (1) (2011)
120–135.

[21] U. Christensen, J. Aubert, P. Cardin, E. Dormy, S. Gibbons, G. Glatzmaier,
E. Grote, Y. Honkura, C. Jones, M. Kono, M. Matsushima, A. Sakuraba, F.
Takahashi, A. Tilgner, J. Wicht, K. Zhang, A numerical dynamo benchmark,
in: Dynamics and Magnetic Fields of the Earth’s and Planetary Interiors,
Physics of the Earth and Planetary Interiors 128 (1–4) (2001) 25–34.

http://dx.doi.org/10.1007/BF02218613
http://dx.doi.org/10.1007/BF02218613
http://dx.doi.org/10.1007/BF02218613
http://dx.doi.org/10.1007/BF02218613
http://dx.doi.org/10.1007/BF02218613
http://dx.doi.org/10.1007/BF02218613
http://dx.doi.org/10.1007/BF02218613

	Remarks on the stability of the Navier--Stokes equations supplemented with stress boundary conditions
	Introduction
	Stress-free boundary condition without precession
	Position of the problem
	The non-axisymmetric case
	The axisymmetry curse
	An admissible stress-free-like boundary condition

	Precession driven flow with Poincaré stress
	Geometry and equations
	Long term stability
	Angular momentum balance

	Precession driven flow with stress-free boundary conditions
	Long time stability
	Useful lemmas

	Numerical illustrations
	Stress-free boundary condition
	Poincaré stress boundary condition
	Small Reynolds number flows
	Large Reynolds number flows


	Discussion
	Acknowledgments
	References


